STONYCREEK RIVER WATERSHED ACT 167 - PHASE 2 STORMWATER MANAGEMENT PLAN

VOLUME III - TECHNICAL APPENDIX

CAMBRIA AND SOMERSET COUNTIES, PENNSYLVANIA

FILE NO.
BLE PROJECT NO. 2005-1719-00

STONYCREEK RIVER WATERSHED
 ACT 167 - PHASE 2
 STORMWATER MANAGEMENT PLAN

CAMBRIA AND SOMERSET COUNTIES, PENNSYLVANIA

VOLUME III TECHNICAL APPENDIX

FILE NO.
BLE PROJECT NO. 2005-1719-00

ENGINEERING CONSULTANT
BORTON-LAWSON ENGINEERING, INC.
3893 Adler Place, Suite 100
Bethlehem, PA 18017

VOLUME III - TECHNICAL APPENDIX

TABLE OF CONTENTS

A. WATERSHED PEAK FLOWS SUMMARY TABLES1
B. HEC-HMS MODEL OUTPUT TABLES 2
C. OBSTRUCTION CAPACITY SUMMARY FORMS (FORM B) 3
D. DATA COLLECTION FORMS 4

WATERSHED PEAK FLOWS SUMMARY TABLES

STONYCREEK RIVER
ACT 167 SUMMARY FLOW TABLES

Subbasin	HMS Element	Subarea$\mathrm{DA}\left(\mathrm{mi}^{2}\right)$	EXISTING CONDITIONS SUBAREA PEAK FLOWS					
			2- Yr	5- Yr	$10-\mathrm{Yr}$	25- Yr	50- Yr	100- Yr
1	W1000	7.28	0	0	15	1124	1295	1792
2	W1010	2.56	82	168	260	266	291	452
3	W1020	0.07	6	15	24	23	24	40
4	W1040	8.81	220	440	669	699	773	1177
5	W1050	6.43	340	612	881	985	1123	1598
6	W1060	1.93	86	178	274	280	306	477
7	W1070	0.32	3	14	31	49	55	83
8	W1080	18.71	502	1143	1833	1983	2300	3120
9	W1090	19.04	322	812	1365	1586	1827	2528
10	W1100	3.55	234	401	562	774	844	1136
11	W1110	6.02	343	594	836	958	1103	1529
12	W1120	0.04	15	23	31	37	44	57
13	W1130	10.16	387	695	1001	1119	1277	1815
14	W1140	7.28	564	871	1156	1619	1816	2319
15	W1150	12.24	558	981	1397	1582	1814	2544
16	W1160	18.73	1457	2194	2870	3957	4494	5661
17	W1170	1.92	81	157	236	334	339	488
18	W1180	17.07	1198	1859	2474	3477	3883	4976
19	W1190	18.08	1185	1784	2334	3218	3649	4598
20	W1200	7.60	1500	2374	3174	4467	4890	6294
21	W1210	6.27	1213	1927	2581	3634	3976	5119
22	W1220	0.88	222	373	513	740	788	1040
23	W1240	6.89	595	891	1161	1595	1818	2282
24	W1250	9.62	1413	2331	3191	4593	4872	6417
25	W1260	0.02	6	8	10	13	15	18
26	W1270	0.01	4	5	7	8	10	11
27	W1280	5.06	427	622	797	1074	1237	1529
28	W1290	11.55	853	1273	1656	2269	2587	3240
29	W1300	5.00	425	643	844	1166	1323	1671
30	W1310	4.97	387	584	765	1057	1199	1512
31	W1320	1.84	110	240	378	391	455	611
32	W1340	3.83	48	159	303	408	461	669
33	W1380	3.06	197	368	539	633	666	971
34	W1390	9.82	405	772	1145	1330	1384	2046
35	W1430	1.08	94	172	250	296	315	453
36	W1450	3.91	234	421	606	721	774	1100
37	W1490	4.67	242	534	841	875	1018	1370
38	W1500	8.60	0	48	137	1688	1975	2591
39	W1540	1.01	234	391	537	775	824	1086
40	W1550	0.90	267	420	559	786	865	1111
41	W670	1.43	274	425	566	610	1025	1271
42	W680	8.29	559	1027	1490	2268	3616	4469
43	W690	7.38	489	822	1139	1387	1536	2089
44	W700	7.16	625	995	1343	1376	2518	3147
45	W710	0.23	25	51	77	88	89	137
46	W720	0.34	125	188	245	251	253	356
47	W730	3.77	316	569	817	975	1046	1488
48	W750	12.30	1470	2081	2631	3036	3743	4671
49	W760	7.75	989	1480	1933	2047	2228	3015

STONYCREEK RIVER
ACT 167 SUMMARY FLOW TABLES

Subbasin	HMS Element	Subarea DA $\left(\mathrm{mi}^{2}\right)$	EXISTING CONDITIONS SUBAREA PEAK FLOWS					
			$5-\mathrm{Yr}$	$10-\mathrm{Yr}$	$25-\mathrm{Yr}$	$50-\mathrm{Yr}$	$100-\mathrm{Yr}$	
50	W 770	6.34	576	1006	1420	1652	1785	2517
51	W 780	0.35	40	80	120	138	141	214
52	W 800	20.00	707	1249	1783	2131	2306	3242
53	W 810	2.57	586	848	1086	1159	1625	2041
54	W 820	1.20	376	532	672	769	1016	1251
55	W 830	4.28	347	618	883	1013	1084	1550
56	W840	13.07	1274	1845	2366	2469	2648	3539
57	W850	7.36	970	1409	1812	2211	2683	3386
58	W860	4.53	404	718	1022	1227	1507	2060
59	W870	9.13	307	590	879	942	1055	1566
60	W880	20.61	477	880	1284	1412	1600	2313
61	W900	18.83	819	1352	1861	2545	2811	3722
62	W910	12.56	563	945	1312	1525	1767	2404
63	W920	12.05	256	600	978	1085	1256	1715
64	W930	9.68	162	442	767	925	1060	1487
65	W940	6.96	279	537	800	857	959	1426
66	W950	2.02	48	135	236	284	325	457
67	W960	1.61	0	0	0	218	247	356
68	W970	3.67	220	478	750	774	900	1209
69	W980	0.05	26	45	60	61	71	83
70	W990	5.90	0	0	1	665	766	1061

Subbasin	HMS Element	Subarea$\mathrm{DA}\left(\mathrm{mi}^{2}\right)$	EXISTING CONDITIONS CUMULATIVE FLOWS					
			2- Yr	5- Yr	$10-\mathrm{Yr}$	$25-\mathrm{Yr}$	$50-\mathrm{Yr}$	$100-\mathrm{Yr}$
1	J168	3.91	234	421	606	721	774	1,100
2	J171	38.22	1,277	2,387	3,452	4,092	4,387	6,263
3	J176	3.83	48	159	303	408	461	669
4	J179	24.72	397	991	1,686	2,065	2,386	3,336
5	J182	9.97	804	1,216	1,593	2,202	2,497	3,153
6	J187	16.61	1,280	1,894	2,452	3,342	3,822	4,768
7	J192	26.60	2,077	3,098	4,030	5,521	6,295	7,888
8	J197	24.36	3,719	5,954	8,022	11,341	12,327	15,947
9	J200	59.76	2,514	3,780	5,022	7,044	8,023	10,251
10	J207	13.87	2,713	4,302	5,753	8,101	8,866	11,413
11	J212	94.90	3,953	5,930	7,784	10,823	12,304	15,623
12	J217	115.55	4,765	7,135	9,327	12,990	14,786	18,714
13	J222	22.39	941	1,671	2,389	2,691	3,079	4,342
14	J225	126.39	4,998	7,511	9,867	13,870	15,710	19,949
15	J230	28.45	1,246	2,197	3,127	3,573	4,094	5,745
16	J239	43.74	882	2,116	3,491	4,038	4,677	6,448
17	J244	36.82	1,522	2,674	3,800	4,481	5,133	7,216
18	J249	29.42	650	1,215	1,789	1,949	2,200	3,207
19	J252	68.87	2,104	3,795	5,471	6,237	7,093	10,130
20	J257	13.17	0	0	15	1,706	1,965	2,719
21	J262	85.99	1,299	3,213	5,336	7,240	8,391	11,528
22	J265	57.09	1,020	2,564	4,288	5,110	5,917	8,174
23	J270	71.16	1,299	3,217	5,344	6,292	7,287	10,042
24	J273	88.39	2,766	4,905	7,005	8,272	9,443	13,360
25	J282	244.48	5,966	9,556	13,043	20,988	24,183	31,748
26	J289	346.53	7,916	12,942	17,870	25,991	29,771	39,330
27	J294	20.43	2,084	3,024	3,884	4,289	4,842	6,313
28	J299	387.31	8,651	14,016	19,270	27,655	31,486	41,459
29	J302	33.93	3,578	5,138	6,554	7,412	8,696	11,116
30	J307	32.88	1,131	2,096	3,029	3,454	3,711	5,357
31	J314	401.39	8,822	14,262	19,584	28,046	31,875	41,933
32	J321	49.37	1,488	2,748	3,953	5,691	6,005	8,443
33	J324	451.32	9,818	15,976	22,074	30,113	33,883	44,538
34	J329	466.77	9,984	16,225	22,405	30,515	34,259	44,993
35	JBen Creek DS	49.59	1,485	2,741	3,942	5,695	6,012	8,451
36	JQuemah Creek DS	99.26	660	1,561	2,708	6,097	7,238	10,161
37	JShade Creek DS	97.52	2,903	5,130	7,315	8,878	10,137	14,346
38	JStony US-Ben Creek	401.73	8,825	14,267	19,591	28,051	31,877	41,932
39	JStony US-Quemah Creek	145.22	5,313	8,016	10,519	14,949	17,042	21,644
40	JStony US-Shade Creek	249.01	6,013	9,623	13,127	21,099	24,301	31,880
41	JStony US-Wells Creek	77.83	3,348	5,019	6,609	9,204	10,477	13,324
42	Lk Stonycreek	25.26	472	838	1,222	1,919	2,104	2,927
43	NForkDam	9.82	392	771	1,144	1,329	1,383	2,003
44	Outlet1	468.19	9,995	16,240	22,425	30,532	34,202	44,921

HEC-HMS MODEL OUTPUT TABLES
Project: Stoneycreek River Simulation Run: Run 2-yr
Volume Units: IN

J168	3.9092000	234.24	29Oct2007, $14: 20$	0.52
J171	38.2160400	1277.06	29Oct2007, $17: 10$	0.47
J176	3.8288000	47.81	29Oct2007, 14:55	0.17
J179	24.7155000	397.05	29Oct2007, 16:10	0.25
J182	9.9661000	804.39	29Oct2007, 15:25	0.84
J187	16.6090000	1279.85	29Oct2007, 16:15	0.93
J192	26.6017844	2076.69	29Oct2007, 16:20	0.90
J197	24.3644000	3718.60	29Oct2007, 13:25	0.74
J200	59.7566044	2514.31	29Oct2007, 18:05	0.70
J207	13.8675000	2713.07	29Oct2007, 12:50	0.79
J212	94.8996044	3953.02	29Oct2007, 18:25	0.73
J217	115.5490044	4764.93	29Oct2007, 18:35	0.74
J222	22.3940000	941.12	29Oct2007, 15:50	0.50
J225	126.3875044	4998.10	29Oct2007, 19:50	0.73
J230	28.4537015	1246.15	29Oct2007, 15:50	0.52

Page 1

J239	43.7412800	882.18	29Oct2007, 15:35	0.28
J244	36.8165015	1521.55	29Oct2007, 16:10	0.51
J249	29.4239000	649.55	29Oct2007, 17:45	0.37
J252	68.8721560	2103.97	29Oct2007, 16:35	0.44
J257	13.1739000	0.00	29Oct2007, 00:00	0.00
J262	85.9936476	1299.22	29Oct2007, 16:40	0.23
J265	57.0895800	1020.25	29Oct2007, 16:20	0.28
J270	71.1585800	1299.04	29Oct2007, 16:25	0.28
J273	88.3907560	2766.06	29Oct2007, 17:40	0.46
J282	244.4784520	5966.49	29Oct2007, 23:30	0.50
J289	346.5263080	7916.16	29Oct2007, 22:35	0.49
J294	20.4305000	2083.87	29Oct2007, 14:20	0.90
J299	387.3064080	8650.75	29Oct2007, 22:35	0.53
J302	33.9296000	3578.14	29Oct2007, 14:55	0.97
J307	32.8777000	1131.21	29Oct2007, 16:30	0.46
J314	401.3895080	8821.52	29Oct2007, 22:55	0.54
J321	49.3666400	1488.43	29Oct2007, 19:10	0.50
J324	451.3185980	9818.33	29Oct2007, 22:35	0.54
J329	466.7654980	9984.26	29Oct2007, 23:10	0.54
JBen Creek DS	49.5918500	1484.77	29Oct2007, 19:45	0.50
JQuemah Creek DS	99.2579476	660.31	30Oct2007, 00:20	0.19

Page 2

JShade Creek DS	97.5205560	2902.56	29Oct2007, 19:15	0.46
JStony US-Ben Creek	401.7267480	8825.40	29Oct2007, 22:55	0.54
JStony US-Quemah Creek	145.2205044	5312.90	29Oct2007, 23:25	0.71
JStony US-Shade Creek	249.0057520	6013.21	29Oct2007, 23:55	0.50
JStony US-Wells Creek	77.8336044	3348.28	29Oct2007, 18:50	0.73
Lk Stonycreek	25.2596200	471.50	29Oct2007, 18:40	0.61
NForkDam	9.8185000	391.64	29Oct2007, 15:15	0.41
Outlet1	468.1926980	9994.96	29Oct2007, 23:35	0.54
R100	32.8777000	118.00	29Oct2007, 17:15	0.46
R120	9.8185000	350.98	29Oct2007, 16:30	0.41
R1330	3.8288000	37.64	29Oct2007, 18:20	0.17
R140	387.3064080	8646.82	29Oct2007, 22:55	0.53
R1440	3.9092000	231.31	29Oct2007, 15:05	0.52
R150	33.9296000	3543.69	29Oct2007, 15:35	0.97
R1520	85.9936476	1299.12	29Oct2007, 16:40	0.23
R1560	24.3644000	455.53	29Oct2007, 19:05	0.60
R160	20.4305000	2058.52	29Oct2007, 15:05	0.90
R20	466.7654980	9978.76	29Oct2007, 23:35	0.54
R200	346.5263080	7912.45	29Oct2007, 22:55	0.49
R210	244.4784520	5965.08	29Oct2007, 23:55	0.50
R220	88.3907560	2740.66	29Oct2007, 19:20	0.46

R260	57.0895800	1019.10	29Oct2007, 16:35	0.28
R270	94.5898476	617.70	30Oct2007, 01:15	0.18
R280	71.1585800	1297.53	29Oct2007, 16:40	0.28
R290	13.1739000	0.00	29Oct2007, 00:00	0.00
R310	68.8721560	2088.70	29Oct2007, 17:55	0.44
R330	36.8165015	1521.17	29Oct2007, 16:10	0.51
R340	29.4239000	648.55	29Oct2007, 18:30	0.37
R370	43.7412800	878.06	29Oct2007, 16:05	0.28
R390	24.7155000	397.01	29Oct2007, 16:10	0.25
R410	126.3875044	4977.74	29Oct2007, 23:50	0.72
R420	28.4537015	1239.03	29Oct2007, 16:25	0.52
R430	22.3940000	938.79	29Oct2007, 16:10	0.50
R480	115.5490044	4749.06	29Oct2007, 20:00	0.74
R50	49.3666400	1482.22	29Oct2007, 19:45	0.50
R520	94.8996044	3944.26	29Oct2007, 19:05	0.73
R560	13.8675000	2523.16	29Oct2007, 13:30	0.79
R570	59.7566044	2495.17	29Oct2007, 19:20	0.70
R580	25.2596200	293.94	30Oct2007, 05:30	0.45
R60	451.3185980	9808.97	29Oct2007, 23:10	0.53
R600	26.6017844	2043.83	29Oct2007, 18:10	0.90
R610	16.6090000	1279.49	29Oct2007, 16:15	0.93

Page 4

R620	9.9661000	796.20	29Oct2007, 16:25	0.84
R80	401.3895080	8821.34	29Oct2007, 22:55	0.54
R90	38.2160400	1242.08	29Oct2007, 19:20	0.47
Reservoir-Indian Lake	24.3644000	455.53	29Oct2007, 19:05	0.60
Reservoir-Lake Gloria	3.8288000	37.68	29Oct2007, 17:45	0.17
Reservoir-Lake Stonycreek	25.2596200	293.94	30Oct2007, 05:30	0.45
Reservoir-North Fork	9.8185000	391.64	29Oct2007, 15:15	0.41
Reservoir-Quemahoning	94.5898476	617.74	30Oct2007, 01:00	0.18
Reservoir-Stoughton Lake	9.6825000	113.85	29Oct2007, 19:00	0.19
W1000	7.2782000	0.00	29Oct2007, 00:00	0.00
W1010	2.5590000	81.93	29Oct2007, 14:45	0.33
W1020	0.0727545	6.31	29Oct2007, 12:25	0.33
W1040	8.8149000	220.46	29Oct2007, 16:10	0.33
W1050	6.4345000	339.77	29Oct2007, 14:45	0.51
W1060	1.9283000	85.98	29Oct2007, 13:45	0.36
W1070	0.3167800	3.23	29Oct2007, 14:05	0.13
W1080	18.7090000	501.53	29Oct2007, 15:20	0.33
W1090	19.0440000	322.26	29Oct2007, 16:10	0.25
W1100	3.5546000	233.84	29Oct2007, 14:25	0.57
W1110	6.0173000	343.36	29Oct2007, 15:00	0.58
W1120	0.0424015	14.84	29Oct2007, 12:20	0.90

Page 5
Project: Stoneycreek River Simulation Run: Run 5-yr
Volume Units: IN

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
J168	3.9092000	421.20	29Oct2007, 14:10	0.86
J171	38.2160400	2386.78	29Oct2007, 16:30	0.79
J176	3.8288000	158.96	29Oct2007, 14:05	0.41
J179	24.7155000	991.11	29Oct2007, 15:35	0.52
J182	9.9661000	1215.65	29Oct2007, 15:20	1.24
J187	16.6090000	1894.06	29Oct2007, 16:15	1.36
J192	26.6017844	3098.27	29Oct2007, 16:15	1.31
J197	24.3644000	5954.10	29Oct2007, 13:20	1.14
J200	59.7566044	3780.44	29Oct2007, 18:00	1.08
J207	13.8675000	4301.65	29Oct2007, 12:50	1.20
J212	94.8996044	5930.07	29Oct2007, 18:20	1.11
J217	115.5490044	7135.26	29Oct2007, 18:25	1.12
J222	22.3940000	1670.84	29Oct2007, 15:40	0.84
J225	126.3875044	7510.85	29Oct2007, 18:30	1.11
J230	28.4537015	2197.42	29Oct2007, 15:40	0.86

Page 1

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
J239	43.7412800	2115.57	29Oct2007, 15:15	0.57
J244	36.8165015	2674.02	29Oct2007, 16:00	0.84
J249	29.4239000	1215.01	29Oct2007, 17:25	0.66
J252	68.8721560	3795.47	29Oct2007, 16:25	0.76
J257	13.1739000	0.00	29Oct2007, 00:00	0.00
J262	85.9936476	3212.94	29Oct2007, 16:05	0.47
J265	57.0895800	2563.96	29Oct2007, 15:45	0.57
J270	71.1585800	3216.72	29Oct2007, 15:55	0.57
J273	88.3907560	4904.54	29Oct2007, 17:30	0.78
J282	244.4784520	9555.56	29Oct2007, 22:50	0.81
J289	346.5263080	12941.70	29Oct2007, 22:10	0.80
J294	20.4305000	3023.79	29Oct2007, 14:20	1.29
J299	387.3064080	14016.03	29Oct2007, 22:15	0.85
J302	33.9296000	5137.69	29Oct2007, 14:55	1.38
J307	32.8777000	2095.71	29Oct2007, 16:00	0.79
J314	401.3895080	14261.53	29Oct2007, 22:30	0.86
J321	49.3666400	2748.41	29Oct2007, 18:30	0.83
J324	451.3185980	15975.98	29Oct2007, 22:00	0.86
J329	466.7654980	16224.96	29Oct2007, 22:35	0.86
JBen Creek DS	49.5918500	2740.79	29Oct2007, 19:05	0.83
JQuemah Creek DS	99.2579476	1561.27	29Oct2007, 21:35	0.41

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
JShade Creek DS	97.5205560	5129.59	29Oct2007, 19:05	0.77
JStony US-Ben Creek	401.7267480	14266.57	29Oct2007, 22:35	0.86
JStony US-Quemah Creek	145.2205044	8015.52	29Oct2007, 22:55	1.08
JStony US-Shade Creek	249.0057520	9622.78	29Oct2007, 23:15	0.81
JStony US-Wells Creek	77.8336044	5018.97	29Oct2007, 18:45	1.11
Lk Stonycreek	25.2596200	837.65	29Oct2007, 17:15	0.97
NForkDam	9.8185000	771.10	29Oct2007, 14:40	0.71
Outlet1	468.1926980	16240.40	29Oct2007, 23:00	0.86
R100	32.8777000	2081.36	29Oct2007, 16:40	0.79
R120	9.8185000	748.31	29Oct2007, 15:50	0.71
R1330	3.8288000	103.11	29Oct2007, 16:45	0.41
R140	387.3064080	14009.73	29Oct2007, 22:30	0.85
R1440	3.9092000	414.87	29Oct2007, 15:00	0.86
R150	33.9296000	5085.62	29Oct2007, 15:35	1.38
R1520	85.9936476	3213.29	29Oct2007, 16:10	0.47
R1560	24.3644000	810.91	29Oct2007, 17:25	0.96
R160	20.4305000	2987.71	29Oct2007, 15:00	1.29
R20	466.7654980	16217.31	29Oct2007, 23:00	0.86
R200	346.5263080	12934.89	29Oct2007, 22:30	0.80
R210	244.4784520	9551.52	29Oct2007, 23:15	0.81
R220	88.3907560	4856.34	29Oct2007, 19:10	0.78

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
R260	57.0895800	2558.80	29Oct2007, 16:00	0.57
R270	94.5898476	1483.09	29Oct2007, 21:50	0.40
R280	71.1585800	3210.46	29Oct2007, 16:05	0.57
R290	13.1739000	0.00	29Oct2007, 00:00	0.00
R310	68.8721560	3763.90	29Oct2007, 17:45	0.76
R330	36.8165015	2673.16	29Oct2007, 16:05	0.84
R340	29.4239000	1212.93	29Oct2007, 18:00	0.66
R370	43.7412800	2104.02	29Oct2007, 15:40	0.57
R390	24.7155000	990.98	29Oct2007, 15:40	0.52
R410	126.3875044	7484.57	29Oct2007, 23:25	1.10
R420	28.4537015	2183.89	29Oct2007, 16:15	0.86
R430	22.3940000	1665.80	29Oct2007, 16:00	0.84
R480	115.5490044	7115.97	29Oct2007, 19:50	1.12
R50	49.3666400	2736.59	29Oct2007, 19:05	0.83
R520	94.8996044	5915.89	29Oct2007, 19:00	1.11
R560	13.8675000	4005.07	29Oct2007, 13:30	1.20
R570	59.7566044	3754.41	29Oct2007, 19:20	1.07
R580	25.2596200	534.46	30Oct2007, 03:20	0.77
R60	451.3185980	15962.52	29Oct2007, 22:40	0.86
R600	26.6017844	3047.38	29Oct2007, 18:10	1.31
R610	16.6090000	1893.94	29Oct2007, 16:15	1.36

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
R620	9.9661000	1203.41	29Oct2007, 16:20	1.24
R80	401.3895080	14260.87	29Oct2007, 22:35	0.86
R90	38.2160400	2330.37	29Oct2007, 18:40	0.79
Reservoir-Indian Lake	24.3644000	810.91	29Oct2007, 17:25	0.96
Reservoir-Lake Gloria	3.8288000	103.34	29Oct2007, 16:10	0.41
Reservoir-Lake Stonycreek	25.2596200	534.46	30Oct2007, 03:15	0.77
Reservoir-North Fork	9.8185000	771.10	29Oct2007, 14:40	0.71
Reservoir-Quemahoning	94.5898476	1483.23	29Oct2007, 21:40	0.40
Reservoir-Stoughton Lake	9.6825000	323.61	29Oct2007, 16:35	0.46
W1000	7.2782000	0.00	29Oct2007, 00:00	0.00
W1010	2.5590000	168.49	29Oct2007, 14:30	0.60
W1020	0.0727545	14.79	29Oct2007, 12:20	0.60
W1040	8.8149000	440.31	29Oct2007, 15:50	0.60
W1050	6.4345000	611.83	29Oct2007, 14:35	0.84
W1060	1.9283000	177.55	29Oct2007, 13:40	0.64
W1070	0.3167800	14.18	29Oct2007, 13:05	0.35
W1080	18.7090000	1142.57	29Oct2007, 15:00	0.64
W1090	19.0440000	811.76	29Oct2007, 15:40	0.52
W1100	3.5546000	400.71	29Oct2007, 14:20	0.92
W1110	6.0173000	593.65	29Oct2007, 14:55	0.93
W1120	0.0424015	23.11	29Oct2007, 12:20	1.34

Project: Stoneycreek River Simulation Run: Run 10-yr
Volume Units: IN

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
J168	3.9092000	605.80	29Oct2007, 14:10	1.18
J171	38.2160400	3452.49	29Oct2007, 16:20	1.10
J176	3.8288000	302.74	29Oct2007, 13:55	0.66
J179	24.7155000	1686.34	29Oct2007, 15:20	0.80
J182	9.9661000	1593.24	29Oct2007, 15:15	1.60
J187	16.6090000	2451.77	29Oct2007, 16:10	1.74
J192	26.6017844	4030.17	29Oct2007, 16:15	1.69
J197	24.3644000	8021.64	29Oct2007, 13:20	1.50
J200	59.7566044	5022.21	29Oct2007, 18:00	1.43
J207	13.8675000	5752.99	29Oct2007, 12:50	1.57
J212	94.8996044	7783.67	29Oct2007, 18:20	1.46
J217	115.5490044	9326.56	29Oct2007, 18:25	1.47
J222	22.3940000	2388.69	29Oct2007, 15:35	1.15
J225	126.3875044	9866.88	29Oct2007, 18:25	1.46
J230	28.4537015	3127.48	29Oct2007, 15:35	1.18

Page 1

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
J239	43.7412800	3490.54	29Oct2007, 15:05	0.86
J244	36.8165015	3800.42	290ct2007, 15:55	1.16
J249	29.4239000	1788.67	29Oct2007, 17:00	0.94
J252	68.8721560	5471.10	29Oct2007, 16:20	1.06
J257	13.1739000	15.36	30Oct2007, 00:35	0.01
J262	85.9936476	5336.48	290ct2007, 15:55	0.71
J265	57.0895800	4288.15	290ct2007, 15:35	0.86
J270	71.1585800	5344.35	29Oct2007, 15:40	0.86
J273	88.3907560	7005.09	290ct2007, 17:25	1.09
J282	244.4784520	13042.96	29Oct2007, 22:30	1.11
J289	346.5263080	17870.44	29Oct2007, 21:55	1.10
J294	20.4305000	3883.95	290ct2007, 14:20	1.64
J299	387.3064080	19270.07	290ct2007, 21:55	1.16
J302	33.9296000	6554.29	29Oct2007, 14:55	1.75
J307	32.8777000	3029.36	29Oct2007, 15:55	1.09
J314	401.3895080	19584.11	290ct2007, 22:10	1.17
J321	49.3666400	3952.74	29Oct2007, 18:20	1.15
J324	451.3185980	22074.30	29Oct2007, 21:30	1.17
J329	466.7654980	22405.15	29Oct2007, 22:05	1.17
JBen Creek DS	49.5918500	3942.37	29Oct2007, 18:50	1.15
JQuemah Creek DS	99.2579476	2708.10	29Oct2007, 20:15	0.65

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
JShade Creek DS	97.5205560	7314.54	29Oct2007, 19:00	1.08
JStony US-Ben Creek	401.7267480	19590.68	29Oct2007, 22:15	1.17
JStony US-Quemah Creek	145.2205044	10518.87	29Oct2007, 22:45	1.42
JStony US-Shade Creek	249.0057520	13127.12	29Oct2007, 22:55	1.11
JStony US-Wells Creek	77.8336044	6609.08	29Oct2007, 18:45	1.46
Lk Stonycreek	25.2596200	1221.66	29Oct2007, 16:40	1.31
NForkDam	9.8185000	1143.96	29Oct2007, 14:35	1.00
Outlet1	468.1926980	22425.41	29Oct2007, 22:30	1.17
R100	32.8777000	3011.19	29Oct2007, 16:30	1.09
R120	9.8185000	1120.51	29Oct2007, 15:40	1.00
R1330	3.8288000	203.95	29Oct2007, 15:55	0.66
R140	387.3064080	19261.02	29Oct2007, 22:10	1.16
R1440	3.9092000	595.80	29Oct2007, 14:55	1.18
R150	33.9296000	6485.67	29Oct2007, 15:35	1.75
R1520	85.9936476	5335.55	29Oct2007, 16:00	0.71
R1560	24.3644000	1185.67	29Oct2007, 16:45	1.30
R160	20.4305000	3838.50	29Oct2007, 15:00	1.64
R20	466.7654980	22396.01	29Oct2007, 22:30	1.17
R200	346.5263080	17860.78	29Oct2007, 22:10	1.10
R210	244.4784520	13035.39	29Oct2007, 22:55	1.11
R220	88.3907560	6934.89	29Oct2007, 19:05	1.09

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
R260	57.0895800	4278.96	290ct2007, 15:45	0.86
R270	94.5898476	2587.78	290ct2007, 20:25	0.63
R280	71.1585800	5333.39	290ct2007, 15:55	0.86
R290	13.1739000	15.33	30Oct2007, 00:35	0.01
R310	68.8721560	5423.11	290ct2007, 17:40	1.06
R330	36.8165015	3799.28	29Oct2007, 16:00	1.16
R340	29.4239000	1785.81	29Oct2007, 17:45	0.94
R370	43.7412800	3469.36	29Oct2007, 15:35	0.86
R390	24.7155000	1686.21	290ct2007, 15:25	0.80
R410	126.3875044	9806.60	290ct2007, 23:10	1.44
R420	28.4537015	3107.80	29Oct2007, 16:15	1.18
R430	22.3940000	2380.48	29Oct2007, 15:55	1.15
R480	115.5490044	9304.82	290ct2007, 19:50	1.47
R50	49.3666400	3936.74	29Oct2007, 18:50	1.15
R520	94.8996044	7765.44	29Oct2007, 19:00	1.46
R560	13.8675000	5360.01	29Oct2007, 13:30	1.57
R570	59.7566044	4983.38	29Oct2007, 19:15	1.42
R580	25.2596200	779.05	30Oct2007, 02:10	1.09
R60	451.3185980	22058.83	29Oct2007, 22:10	1.17
R600	26.6017844	3963.04	29Oct2007, 18:05	1.69
R610	16.6090000	2451.14	29Oct2007, 16:15	1.74

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
R620	9.9661000	1577.04	29Oct2007, 16:15	1.60
R80	401.3895080	19583.56	29Oct2007, 22:15	1.17
R90	38.2160400	3381.84	29Oct2007, 18:30	1.10
Reservoir-Indian Lake	24.3644000	1185.69	29Oct2007, 16:45	1.30
Reservoir-Lake Gloria	3.8288000	205.29	29Oct2007, 15:15	0.66
Reservoir-Lake Stonycreek	25.2596200	779.05	30Oct2007, 02:05	1.09
Reservoir-North Fork	9.8185000	1143.96	29Oct2007, 14:35	1.00
Reservoir-Quemahoning	94.5898476	2588.19	29Oct2007, 20:15	0.63
Reservoir-Stoughton Lake	9.6825000	592.19	29Oct2007, 15:55	0.73
W1000	7.2782000	14.77	30Oct2007, 00:30	0.01
W1010	2.5590000	259.58	29Oct2007, 14:25	0.87
W1020	0.0727545	23.87	29Oct2007, 12:20	0.86
W1040	8.8149000	669.37	29Oct2007, 15:40	0.87
W1050	6.4345000	880.99	29Oct2007, 14:30	1.16
W1060	1.9283000	273.88	29Oct2007, 13:35	0.91
W1070	0.3167800	31.42	29Oct2007, 12:55	0.58
W1080	18.7090000	1833.21	29Oct2007, 14:50	0.95
W1090	19.0440000	1364.73	29Oct2007, 15:25	0.80
W1100	3.5546000	561.58	29Oct2007, 14:20	1.24
W1110	6.0173000	836.45	290ct2007, 14:50	1.27
W1120	0.0424015	30.53	29Oct2007, 12:20	1.74

Project: Stoneycreek River Simulation Run: Run 25-yr
Volume Units: IN

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
J168	3.9092000	720.75	29Oct2007, 14:10	1.44
J171	38.2160400	4091.51	29Oct2007, 15:20	1.34
J176	3.8288000	407.79	29Oct2007, 15:35	1.19
J179	24.7155000	2065.46	29Oct2007, 18:05	1.37
J182	9.9661000	2202.26	29Oct2007, 15:15	2.19
J187	16.6090000	3341.91	29Oct2007, 16:10	2.35
J192	26.6017844	5521.49	29Oct2007, 16:10	2.29
J197	24.3644000	11340.53	29Oct2007, 13:20	2.09
J200	59.7566044	7044.10	29Oct2007, 18:00	1.99
J207	13.8675000	8101.06	29Oct2007, 12:45	2.17
J212	94.8996044	10823.08	29Oct2007, 18:20	2.03
J217	115.5490044	12989.78	29Oct2007, 18:15	2.04
J222	22.3940000	2691.24	29Oct2007, 15:40	1.35
J225	126.3875044	13869.93	29Oct2007, 18:00	2.03
J230	28.4537015	3573.38	29Oct2007, 15:35	1.38

[^0]| Hydrologic Element | Drainage Area (MI2) | Peak Discharge (CFS) | Time of Peak | Volume (IN) |
| :---: | :---: | :---: | :---: | :---: |
| J239 | 43.7412800 | 4037.60 | 29Oct2007, 17:55 | 1.44 |
| J244 | 36.8165015 | 4481.00 | 29Oct2007, 15:30 | 1.36 |
| J249 | 29.4239000 | 1948.84 | 29Oct2007, 17:30 | 1.07 |
| J252 | 68.8721560 | 6237.24 | 29Oct2007, 16:00 | 1.22 |
| J257 | 13.1739000 | 1705.90 | 29Oct2007, 15:30 | 1.47 |
| J262 | 85.9936476 | 7239.56 | 29Oct2007, 19:05 | 1.44 |
| J265 | 57.0895800 | 5109.67 | 29Oct2007, 18:35 | 1.44 |
| J270 | 71.1585800 | 6291.79 | 29Oct2007, 19:00 | 1.44 |
| J273 | 88.3907560 | 8271.65 | 29Oct2007, 16:30 | 1.26 |
| J282 | 244.4784520 | 20987.63 | 29Oct2007, 21:45 | 1.75 |
| J289 | 346.5263080 | 25990.55 | 29Oct2007, 21:25 | 1.61 |
| J294 | 20.4305000 | 4289.41 | 29Oct2007, 14:20 | 1.83 |
| J299 | 387.3064080 | 27655.18 | 29Oct2007, 21:35 | 1.64 |
| J302 | 33.9296000 | 7411.83 | 29Oct2007, 14:45 | 1.97 |
| J307 | 32.8777000 | 3453.77 | 29Oct2007, 15:30 | 1.33 |
| J314 | 401.3895080 | 28046.29 | 29Oct2007, 21:55 | 1.63 |
| J321 | 49.3666400 | 5690.55 | 29Oct2007, 15:25 | 1.40 |
| J324 | 451.3185980 | 30113.37 | 29Oct2007, 21:50 | 1.61 |
| J329 | 466.7654980 | 30515.22 | 29Oct2007, 22:25 | 1.61 |
| JBen Creek DS | 49.5918500 | 5695.42 | 29Oct2007, 15:35 | 1.40 |
| JQuemah Creek DS | 99.2579476 | 6096.70 | 29Oct2007, 22:15 | 1.43 |

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
JShade Creek DS	97.5205560	8878.24	29Oct2007, 17:15	1.24
JStony US-Ben Creek	401.7267480	28051.47	29Oct2007, 22:00	1.63
JStony US-Quemah Creek	145.2205044	14948.92	29Oct2007, 21:30	1.97
JStony US-Shade Creek	249.0057520	21099.07	29Oct2007, 22:05	1.75
JStony US-Wells Creek	77.8336044	9204.29	29Oct2007, 18:45	2.03
Lk Stonycreek	25.2596200	1918.99	29Oct2007, 16:05	1.87
NForkDam	9.8185000	1328.94	29Oct2007, 14:40	1.21
Outlet1	468.1926980	30532.49	29Oct2007, 22:50	1.61
R100	32.8777000	3447.42	29Oct2007, 15:40	1.33
R120	9.8185000	1325.02	29Oct2007, 14:55	1.21
R1330	3.8288000	348.04	29Oct2007, 18:00	1.19
R140	387.3064080	27637.67	29Oct2007, 22:00	1.63
R1440	3.9092000	718.77	29Oct2007, 14:25	1.44
R150	33.9296000	7373.88	29Oct2007, 15:05	1.97
R1520	85.9936476	7239.32	29Oct2007, 19:05	1.44
R1560	24.3644000	1865.86	29Oct2007, 16:15	1.86
R160	20.4305000	4267.32	29Oct2007, 14:40	1.83
R20	466.7654980	30496.66	290ct2007, 22:50	1.61
R200	346.5263080	25972.44	29Oct2007, 21:45	1.60
R210	244.4784520	20976.86	29Oct2007, 22:05	1.75
R220	88.3907560	8229.86	290ct2007, 17:20	1.26

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
R260	57.0895800	5100.64	29Oct2007, 19:05	1.44
R270	94.5898476	5924.40	29Oct2007, 22:20	1.42
R280	71.1585800	6280.81	29Oct2007, 19:25	1.44
R290	13.1739000	1705.44	29Oct2007, 15:30	1.47
R310	68.8721560	6209.86	29Oct2007, 16:40	1.22
R330	36.8165015	4480.56	29Oct2007, 15:35	1.36
R340	29.4239000	1946.93	29Oct2007, 17:45	1.07
R370	43.7412800	4022.28	29Oct2007, 18:55	1.44
R390	24.7155000	2064.86	29Oct2007, 18:10	1.37
R410	126.3875044	13769.95	29Oct2007, 21:50	2.01
R420	28.4537015	3561.69	29Oct2007, 15:55	1.38
R430	22.3940000	2687.06	29Oct2007, 15:50	1.35
R480	115.5490044	12968.16	29Oct2007, 19:20	2.04
R50	49.3666400	5683.64	29Oct2007, 15:35	1.40
R520	94.8996044	10799.08	29Oct2007, 18:50	2.02
R560	13.8675000	7526.49	29Oct2007, 13:30	2.17
R570	59.7566044	6991.09	29Oct2007, 19:15	1.98
R580	25.2596200	1197.68	30Oct2007, 00:55	1.61
R60	451.3185980	30082.36	29Oct2007, 22:25	1.61
R600	26.6017844	5428.42	29Oct2007, 18:05	2.29
R610	16.6090000	3341.25	29Oct2007, 16:10	2.35

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
R620	9.9661000	2179.29	29Oct2007, 16:15	2.19
R80	401.3895080	28042.70	290ct2007, 22:00	1.63
R90	38.2160400	4079.39	29Oct2007, 15:50	1.34
Reservoir-Indian Lake	24.3644000	1865.88	29Oct2007, 16:10	1.86
Reservoir-Lake Gloria	3.8288000	351.74	29Oct2007, 16:45	1.19
Reservoir-Lake Stonycreek	25.2596200	1197.69	30Oct2007, 00:50	1.61
Reservoir-North Fork	9.8185000	1328.94	290ct2007, 14:40	1.21
Reservoir-Quemahoning	94.5898476	5925.60	29Oct2007, 22:10	1.42
Reservoir-Stoughton Lake	9.6825000	863.38	29Oct2007, 18:15	1.29
W1000	7.2782000	1123.71	29Oct2007, 15:05	1.50
W1010	2.5590000	265.97	29Oct2007, 14:35	0.97
W1020	0.0727545	23.48	29Oct2007, 12:20	0.97
W1040	8.8149000	698.74	29Oct2007, 15:55	0.96
W1050	6.4345000	984.87	29Oct2007, 14:35	1.35
W1060	1.9283000	280.33	29Oct2007, 13:40	1.02
W1070	0.3167800	49.27	29Oct2007, 13:40	1.10
W1080	18.7090000	1983.32	29Oct2007, 17:30	1.55
W1090	19.0440000	1585.90	29Oct2007, 18:25	1.37
W1100	3.5546000	773.99	29Oct2007, 14:15	1.68
W1110	6.0173000	957.80	29Oct2007, 14:55	1.50
W1120	0.0424015	37.49	29Oct2007, 12:20	2.12

Project: Stoneycreek River Simulation Run: Run 50-yr

StonyHMS-100yr

Control Specifications: Control Porject
Compute Time: 07Dec2007, 12:30:13

Volume Units: IN

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
J168	3.9092000	773.66	29Oct2007, 14:15	1.60
J171	38.2160400	4387.07	29Oct2007, 15:35	1.48
J176	3.8288000	461.01	29Oct2007, 15:40	1.37
J179	24.7155000	2385.77	29Oct2007, 18:00	1.59
J182	9.9661000	2497.22	29Oct2007, 15:15	2.48
J187	16.6090000	3822.26	29Oct2007, 16:10	2.68
J192	26.6017844	6295.30	29Oct2007, 16:15	2.61
J197	24.3644000	12326.77	29Oct2007, 13:20	2.28
J200	59.7566044	8022.92	29Oct2007, 18:00	2.25
J207	13.8675000	8866.35	29Oct2007, 12:50	2.38
J212	94.8996044	12303.55	29Oct2007, 18:25	2.29
J217	115.5490044	14786.29	29Oct2007, 18:15	2.30
J222	22.3940000	3078.50	29Oct2007, 15:40	1.56
J225	126.3875044	15710.42	29Oct2007, 17:55	2.29
J230	28.4537015	4094.02	29Oct2007, 15:35	1.60

[^1]| Hydrologic Element | Drainage Area (MI2) | Peak Discharge (CFS) | Time of Peak | Volume (IN) |
| :---: | :---: | :---: | :---: | :---: |
| J239 | 43.7412800 | 4677.40 | 29Oct2007, 17:55 | 1.68 |
| J244 | 36.8165015 | 5133.40 | 29Oct2007, 15:35 | 1.57 |
| J249 | 29.4239000 | 2199.83 | 29Oct2007, 17:30 | 1.22 |
| J252 | 68.8721560 | 7092.54 | 29Oct2007, 16:00 | 1.41 |
| J257 | 13.1739000 | 1965.27 | 29Oct2007, 15:35 | 1.71 |
| J262 | 85.9936476 | 8391.38 | 29Oct2007, 19:10 | 1.68 |
| J265 | 57.0895800 | 5917.22 | 29Oct2007, 18:40 | 1.67 |
| J270 | 71.1585800 | 7287.21 | 29Oct2007, 19:00 | 1.68 |
| J273 | 88.3907560 | 9443.34 | 29Oct2007, 16:35 | 1.46 |
| J282 | 244.4784520 | 24183.37 | 29Oct2007, 21:35 | 2.00 |
| J289 | 346.5263080 | 29771.04 | 29Oct2007, 21:40 | 1.84 |
| J294 | 20.4305000 | 4842.25 | 29Oct2007, 14:20 | 2.09 |
| J299 | 387.3064080 | 31486.09 | 29Oct2007, 22:25 | 1.88 |
| J302 | 33.9296000 | 8695.48 | 29Oct2007, 14:45 | 2.33 |
| J307 | 32.8777000 | 3710.88 | 29Oct2007, 15:40 | 1.47 |
| J314 | 401.3895080 | 31874.79 | 29Oct2007, 23:15 | 1.87 |
| J321 | 49.3666400 | 6005.36 | 29Oct2007, 15:45 | 1.56 |
| J324 | 451.3185980 | 33882.56 | 29Oct2007, 23:20 | 1.84 |
| J329 | 466.7654980 | 34259.18 | 30Oct2007, 00:45 | 1.86 |
| JBen Creek DS | 49.5918500 | 6011.61 | 29Oct2007, 15:55 | 1.56 |
| JQuemah Creek DS | 99.2579476 | 7238.08 | 29Oct2007, 22:10 | 1.68 |

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
JShade Creek DS	97.5205560	10136.48	29Oct2007, 17:15	1.44
JStony US-Ben Creek	401.7267480	31876.85	29Oct2007, 23:30	1.87
JStony US-Quemah Creek	145.2205044	17042.14	29Oct2007, 21:10	2.23
JStony US-Shade Creek	249.0057520	24301.08	29Oct2007, 22:30	2.00
JStony US-Wells Creek	77.8336044	10477.07	29Oct2007, 18:45	2.29
Lk Stonycreek	25.2596200	2104.10	29Oct2007, 16:15	2.05
NForkDam	9.8185000	1383.13	29Oct2007, 14:45	1.32
Outlet1	468.1926980	34202.21	30Oct2007, 01:45	1.86
R100	32.8777000	3706.98	29Oct2007, 15:55	1.47
R120	9.8185000	1376.42	29Oct2007, 15:05	1.32
R1330	3.8288000	409.00	29Oct2007, 17:50	1.37
R140	387.3064080	31437.58	29Oct2007, 23:20	1.88
R1440	3.9092000	770.68	29Oct2007, 14:30	1.60
R150	33.9296000	8653.57	29Oct2007, 15:00	2.33
R1520	85.9936476	8391.43	29Oct2007, 19:10	1.68
R1560	24.3644000	2044.88	29Oct2007, 16:25	2.04
R160	20.4305000	4817.60	29Oct2007, 14:40	2.09
R20	466.7654980	34197.45	30Oct2007, 01:45	1.85
R200	346.5263080	29722.85	29Oct2007, 22:35	1.83
R210	244.4784520	24157.72	29Oct2007, 22:30	2.00
R220	88.3907560	9396.38	29Oct2007, 17:25	1.46

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
R260	57.0895800	5905.70	29Oct2007, 19:10	1.67
R270	94.5898476	7030.65	29Oct2007, 22:15	1.66
R280	71.1585800	7274.37	29Oct2007, 19:30	1.68
R290	13.1739000	1965.25	29Oct2007, 15:35	1.71
R310	68.8721560	7062.15	29Oct2007, 16:40	1.41
R330	36.8165015	5132.07	29Oct2007, 15:35	1.57
R340	29.4239000	2197.19	29Oct2007, 17:55	1.22
R370	43.7412800	4658.03	29Oct2007, 18:55	1.68
R390	24.7155000	2384.39	29Oct2007, 18:10	1.59
R410	126.3875044	15627.13	29Oct2007, 21:40	2.27
R420	28.4537015	4082.24	29Oct2007, 15:55	1.60
R430	22.3940000	3073.95	29Oct2007, 15:55	1.56
R480	115.5490044	14755.46	29Oct2007, 19:20	2.30
R50	49.3666400	5998.80	29Oct2007, 15:55	1.56
R520	94.8996044	12281.53	29Oct2007, 18:50	2.28
R560	13.8675000	8252.84	29Oct2007, 13:30	2.38
R570	59.7566044	7961.14	29Oct2007, 19:20	2.23
R580	25.2596200	1346.81	30Oct2007, 00:50	1.78
R60	451.3185980	33797.46	30Oct2007, 00:50	1.83
R600	26.6017844	6189.19	29Oct2007, 18:05	2.61
R610	16.6090000	3821.02	29Oct2007, 16:10	2.68

Page 4

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
R620	9.9661000	2471.54	29Oct2007, 16:15	2.48
R80	401.3895080	31867.18	29Oct2007, 23:30	1.87
R90	38.2160400	4368.38	29Oct2007, 16:15	1.48
Reservoir-Indian Lake	24.3644000	2044.85	29Oct2007, 16:20	2.04
Reservoir-Lake Gloria	3.8288000	417.62	29Oct2007, 16:40	1.37
Reservoir-Lake Stonycreek	25.2596200	1346.81	30Oct2007, 00:50	1.78
Reservoir-North Fork	9.8185000	1383.13	29Oct2007, 14:45	1.32
Reservoir-Quemahoning	94.5898476	7031.90	29Oct2007, 22:00	1.66
Reservoir-Stoughton Lake	9.6825000	996.18	29Oct2007, 18:15	1.50
W1000	7.2782000	1295.02	29Oct2007, 15:05	1.75
W1010	2.5590000	291.27	29Oct2007, 14:40	1.10
W1020	0.0727545	23.64	29Oct2007, 12:25	1.09
W1040	8.8149000	772.63	29Oct2007, 16:00	1.10
W1050	6.4345000	1122.61	29Oct2007, 14:40	1.57
W1060	1.9283000	306.42	29Oct2007, 13:45	1.17
W1070	0.3167800	54.49	29Oct2007, 13:45	1.26
W1080	18.7090000	2299.56	29Oct2007, 17:35	1.81
W1090	19.0440000	1827.03	29Oct2007, 18:30	1.59
W1100	3.5546000	843.64	29Oct2007, 14:20	1.88
W1110	6.0173000	1102.95	29Oct2007, 14:55	1.75
W1120	0.0424015	44.34	29Oct2007, 12:20	2.49

Project: Stoneycreek River Simulation Run: Run 100-yr

StonyHMS-100yr

 Met 100-yrCompute Time: 07Jan2008, 11:29:05 Control Specifications: Control Porject

Volume Units: IN

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
J168	3.9092000	1100.10	29Oct2007, 14:10	2.15
J171	38.2160400	6263.32	29Oct2007, 15:35	2.02
J176	3.8288000	669.31	29Oct2007, 15:30	1.89
J179	24.7155000	3336.16	29Oct2007, 17:50	2.14
J182	9.9661000	3152.71	29Oct2007, 15:15	3.10
J187	16.6090000	4768.18	29Oct2007, 16:10	3.32
J192	26.6017844	7887.71	29Oct2007, 16:10	3.24
J197	24.3644000	15947.20	29Oct2007, 13:20	2.89
J200	59.7566044	10251.35	29Oct2007, 18:00	2.85
J207	13.8675000	11412.95	29Oct2007, 12:45	3.01
J212	94.8996044	15623.37	29Oct2007, 18:20	2.89
J217	115.5490044	18714.11	29Oct2007, 18:15	2.91
J222	22.3940000	4341.72	29Oct2007, 15:35	2.11
J225	126.3875044	19949.35	29Oct2007, 17:55	2.89
J230	28.4537015	5744.96	29Oct2007, 15:30	2.15

Page 1

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
J239	43.7412800	6448.19	29Oct2007, 17:45	2.24
J244	36.8165015	7215.89	29Oct2007, 15:30	2.12
J249	29.4239000	3207.26	29Oct2007, 17:25	1.71
J252	68.8721560	10130.28	29Oct2007, 15:55	1.93
J257	13.1739000	2718.47	29Oct2007, 15:25	2.28
J262	85.9936476	11527.46	29Oct2007, 19:00	2.24
J265	57.0895800	8174.21	29Oct2007, 18:25	2.23
J270	71.1585800	10041.77	29Oct2007, 18:50	2.24
J273	88.3907560	13359.93	29Oct2007, 16:25	1.98
J282	244.4784520	31747.54	29Oct2007, 21:15	2.59
J289	346.5263080	39329.53	29Oct2007, 21:30	2.41
J294	20.4305000	6313.19	29Oct2007, 14:20	2.67
J299	387.3064080	41459.05	29Oct2007, 22:15	2.45
J302	33.9296000	11116.00	29Oct2007, 14:40	2.94
J307	32.8777000	5357.44	29Oct2007, 15:30	2.00
J314	401.3895080	41932.82	29Oct2007, 23:05	2.44
J321	49.3666400	8443.34	29Oct2007, 15:35	2.11
J324	451.3185980	44537.64	29Oct2007, 23:10	2.41
J329	466.7654980	44992.45	30Oct2007, 00:35	2.42
JBen Creek DS	49.5918500	8450.54	29Oct2007, 15:45	2.11
JQuemah Creek DS	99.2579476	10160.62	29Oct2007, 21:40	2.24

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
JShade Creek DS	97.5205560	14345.68	29Oct2007, 17:10	1.96
JStony US-Ben Creek	401.7267480	41932.30	29Oct2007, 23:20	2.44
JStony US-Quemah Creek	145.2205044	21644.19	29Oct2007, 21:05	2.82
JStony US-Shade Creek	249.0057520	31880.06	29Oct2007, 22:15	2.58
JStony US-Wells Creek	77.8336044	13323.50	29Oct2007, 18:45	2.90
Lk Stonycreek	25.2596200	2926.98	29Oct2007, 15:55	2.65
NForkDam	9.8185000	2002.69	29Oct2007, 14:55	1.83
Outlet1	468.1926980	44920.50	30Oct2007, 01:30	2.42
R100	32.8777000	5338.56	29Oct2007, 15:45	2.00
R120	9.8185000	2000.52	29Oct2007, 15:15	1.83
R1330	3.8288000	627.06	29Oct2007, 17:25	1.89
R140	387.3064080	41393.12	29Oct2007, 23:05	2.44
R1440	3.9092000	1094.61	29Oct2007, 14:25	2.15
R150	33.9296000	11065.44	29Oct2007, 15:00	2.94
R1520	85.9936476	11527.90	29Oct2007, 19:00	2.24
R1560	24.3644000	2848.85	29Oct2007, 16:00	2.64
R160	20.4305000	6281.62	29Oct2007, 14:40	2.67
R20	466.7654980	44911.38	30Oct2007, 01:30	2.42
R200	346.5263080	39260.97	29Oct2007, 22:20	2.40
R210	244.4784520	31702.87	29Oct2007, 22:15	2.58
R220	88.3907560	13289.09	29Oct2007, 17:15	1.98

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
R260	57.0895800	8157.60	29Oct2007, 18:55	2.23
R270	94.5898476	9886.49	29Oct2007, 21:45	2.22
R280	71.1585800	10022.28	29Oct2007, 19:20	2.24
R290	13.1739000	2717.90	29Oct2007, 15:30	2.28
R310	68.8721560	10084.72	29Oct2007, 16:35	1.93
R330	36.8165015	7215.22	29Oct2007, 15:30	2.12
R340	29.4239000	3206.29	29Oct2007, 17:40	1.71
R370	43.7412800	6425.15	29Oct2007, 18:40	2.24
R390	24.7155000	3334.11	29Oct2007, 17:55	2.14
R410	126.3875044	19819.81	29Oct2007, 21:30	2.86
R420	28.4537015	5728.38	29Oct2007, 15:50	2.15
R430	22.3940000	4334.17	29Oct2007, 15:45	2.11
R480	115.5490044	18678.19	29Oct2007, 19:20	2.90
R50	49.3666400	8433.72	29Oct2007, 15:50	2.11
R520	94.8996044	15592.56	29Oct2007, 18:50	2.88
R560	13.8675000	10605.46	29Oct2007, 13:30	3.01
R570	59.7566044	10176.12	29Oct2007, 19:15	2.83
R580	25.2596200	1833.09	29Oct2007, 23:50	2.35
R60	451.3185980	44423.39	30Oct2007, 00:35	2.40
R600	26.6017844	7753.56	29Oct2007, 18:05	3.24
R610	16.6090000	4767.25	29Oct2007, 16:10	3.32

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
R620	9.9661000	3119.58	29Oct2007, 16:15	3.10
R80	401.3895080	41920.52	29Oct2007, 23:20	2.44
R90	38.2160400	6232.87	29Oct2007, 16:15	2.02
Reservoir-Indian Lake	24.3644000	2848.78	29Oct2007, 16:00	2.64
Reservoir-Lake Gloria	3.8288000	636.92	29Oct2007, 16:15	1.89
Reservoir-Lake Stonycreek	25.2596200	1833.08	29Oct2007, 23:50	2.35
Reservoir-North Fork	9.8185000	2002.69	29Oct2007, 14:55	1.83
Reservoir-Quemahoning	94.5898476	9888.55	29Oct2007, 21:35	2.22
Reservoir-Stoughton Lake	9.6825000	1405.55	29Oct2007, 18:00	2.04
W1000	7.2782000	1791.48	29Oct2007, 15:00	2.32
W1010	2.5590000	452.37	29Oct2007, 14:30	1.57
W1020	0.0727545	40.21	29Oct2007, 12:20	1.56
W1040	8.8149000	1177.22	29Oct2007, 15:50	1.57
W1050	6.4345000	1597.84	29Oct2007, 14:30	2.12
W1060	1.9283000	477.09	29Oct2007, 13:35	1.65
W1070	0.3167800	83.05	29Oct2007, 13:40	1.76
W1080	18.7090000	3119.99	29Oct2007, 17:25	2.38
W1090	19.0440000	2528.32	29Oct2007, 18:20	2.14
W1100	3.5546000	1136.04	29Oct2007, 14:15	2.45
W1110	6.0173000	1528.87	29Oct2007, 14:50	2.32
W1120	0.0424015	57.08	29Oct2007, 12:20	3.14

C. OBSTRUCTION CAPACITY SUMMARY FORMS (FORM B)

Watershed: Completed by: Checked by: Date(s):	Stonycreek						Box Culverts Calculation Sheet													
															$\begin{aligned} & \text { D= Diam } \\ & \text { HT }=\text { Hei } \end{aligned}$	eter		CMP = Corrugated Metal Pipe CPP = Corrugated Polyethylene Pipe		ID No Space
			$\begin{gathered} \text { Area } \\ \text { (SQ. FT) } \end{gathered}$	$\begin{gathered} \text { Nos. } \\ \text { of? } \end{gathered}$	Type		Opening								$\mathrm{W}=$ Wid pW Pi	th		BCCMP = Bituminous Coated Corrugated Metal Pipe		
	Owner or Address	Capacity							hape			Measurements							notes	
Map ID.					$\begin{aligned} & \text { Part of } \\ & \text { Bridge? } \end{aligned}$	$\begin{gathered} \text { Culvert } \\ \hline \text { Purpose } \\ \hline \end{gathered}$	Culvert			Bridge		${ }_{\text {(ti) }}$	${ }_{\text {(ti) }}$	$\begin{array}{\|l\|} \hline \text { HT } \\ \hline(t) 1{ }^{\prime} \\ \hline \end{array}$	w (tr) 6.0 10	${ }_{\text {PW }}^{\text {P/ti) }}$	$\begin{gathered} \text { skew } \\ \text { angle } \end{gathered}$			
\#							\square	0	0		\square									
SCR122	${ }^{601}$ Pen Pen Dot	173									X	0						$\frac{\text { material }}{\text { RCP cement HW } 16 \text { ' wide } 6 \text { ' high }}$	little water	
SCR126	Creek Penn Dot 403	310,405	5,355	4	\times						x			42.0	127.5	3.5	30.0	msty-concrete	bridge goes overc creek and railroad	SCR126
SCR127	Penn Dot 403	${ }^{857}$	${ }^{63}$	$\frac{1}{2}$		road	x					6		7.0	9.0			Concrete Mssy HW 9 ' high		SeCR127
SCR128	Penn Dot 403	${ }^{19,748}$	${ }_{1,071}^{10}$	2	x						x			17.0	63.0	3.5		Concrete HW -2 ${ }^{\text {1 high }}$	EWW-21' Wide W-SW	SCR128
SCR130	Roadroad Bridge adiacent to	1,757	210	1	x						x			14.0	15.0			Msry No WWs No SWs		SCR130
SCR135	Bridge	10,119	1,600	1	x						x			8.0	200.0	6.0		Msry	Bridge has road undereath it	SCR135
	Hooversville Borough Twp	15,337	990	2	X						X			12.0	82.5	4.0		Concrete	75% flow of water going under east end of bridge	${ }^{\text {SCRC136 }}$
SCR139	Penndot 403 South, Hoverssville	741	${ }^{130}$	1		road	x							6.5	20.0			concrete, water flowing well 2 wws - 6 each	nt culvert spweing mine water in to the stream betore running under	SCR139
SCR140	Hooversville	635	${ }^{121}$	1	X						x			5.5	22.0			Mssy- bridge build on steel wioth supporting msry	2 wws-17 ${ }^{\text {P }}$ each-msry	SCR140
SCR142	Penn dot 403 Hooversville	${ }^{139}$	${ }^{29}$	1		road	X							4.5	6.5			concrete HW 6 ' high	2 WWs $6^{6} \mathrm{NWW}$ W mostly buried by till. Steam is low	SCR142
SCR143	Hooversville	394	72	1		road	x							6.0	12.0			Concrete 2 low angle WWs 6 'each		SCR143
SCR145	Private	1,316	208	1	X						${ }_{\text {x }}$			8.0	26.0			Built out of wood over old bridge		SCR145
SCR146	RR near Hooversville	42,000	2,100	2										20.0	105.0	4.0	45.0	Msy/concrete 2 SW's 12each	95\% of water Ilows under north end	SCR146
SCR153		592 538	108 91	1	+						X			${ }_{6}^{6.0}$	$\stackrel{18.0}{13.0}$			$\frac{\text { Concreete } 2 \text { wws-10 each hW } 8.5 \text { high }}{\text { Concrete }}$	Bridge falling apar, old	SCR153
SCR155	Railirad Along	32	10	1		railroad	x							2.0	5.0			Concrete	Pond Discharge and stream combine under railroad culvert	SCR155
SCR158	Shade Twp Railirad Bridge	1,224	165	1	\times						${ }^{\mathrm{X}}$			11.0	15.0			MSRY Holds up site built of used and steel AMD		SCR158
SCR159	Paint Twp Railroad Bridge	70	26	1	X						x			1.5	17.0			MSAY holds up side, builto of wood and steel		SCR159
SCR160	${ }^{\text {t }}$ Twp Culvert Running under raill	634	${ }^{95}$	1		railroad	${ }^{\text {x }}$							9.0	10.5			Concrete 2 WWS-16 each HW-12 ${ }^{\text {r }}$ 'igh	Stream is clear waterfall (manmade) in front of culvert	SCR160
SCR161	Conemaugh Twp Rairoad culver	${ }^{93}$	24	1		railroad	X							3.0	8.0			Concrete ESW-7Wide WSW-4Wide	HW.5 high	SCR161
SCR162	Conemaugh Twp Reilrod	${ }^{30,053}$	3,360	1	x						x			16.0	210.0	8.0	60.0	Msry holds up concrete structure-built of wood and steel	American Bridge Co. 19162 WWs -30 ${ }^{\circ}$ each	SCR162
SCR163	running over	7,902,532	35,700	7	x	high wall					x			200.0	178.5	10.0		Concrete over RR and Storycreek	ight estimated Pier to Pier 200 7 Piers end piers -100 away from bs	SCR163
SCR165	company (out of order) Trie Hill	1,214	192	1	x	road					x			8.0	4.0			Concrete W SW - 15^{\prime}	Flowing well	SCR165
SCR166	Stoystown	20,227	987	2	x						x			21.0	47.0	3.0		solid cement 2 WW 25^{\prime} each	80\% WWs under east end of pier	SCR166
SCR167	Rt 30 Stoystown	5,011	374	$\frac{2}{2}$	x						x			9.0	41.5	3.0		solid cement HW 13 2 2 WWs $15{ }^{\text {e each }}$	all the creek WWs under east end pier falling apart	SCR167
SCR168	Stoystown	7,179	968	1	+						X			11.0	88.0			Iron'wood bridge msry WW 24 each	built in 1887 stills looks good	${ }^{\text {SCRR168 }}$
SCR170	403 Stoystown over stonycreek	27,038	$\stackrel{1,387}{ }$	2	+						x			19.0	73.0	3.0		Steel bridge with cement WW N SW 25^{\prime} ' WW $^{\text {W }} 30^{\prime}$	old, but solid	SCR170
SCR171	Penn Dot 281	${ }^{2,733}$	${ }^{231}$	2	+						X			7.0	33.0	3.0	$\stackrel{450}{45}$		HW cement breaking up	SCR171
${ }_{\text {SCR172 }}$	Quemahoning Twp	$\stackrel{6,363}{\text {, }}$	$\begin{array}{r}858 \\ \hline 58 \\ \hline\end{array}$	1	¢						${ }^{\mathrm{x}} \mathrm{x}$			${ }^{11.0}$	78.0		$\stackrel{45.0}{450}$	solid concrete $\mathrm{HWW} 15^{\circ} \mathrm{E}$ WW $18^{\circ} \mathrm{W}$ WW 9^{\prime}	majority of flow runs under E end	${ }_{\text {SCR172 }}$
$\begin{aligned} & \text { SCR174 } \\ & \text { SCR175 } \end{aligned}$	$\frac{\text { Quemahoning Twp }}{\text { Private } 2 \text { House }}$	3,960 1,038	560 182	$\frac{1}{1}$	$\frac{\mathrm{x}}{\mathrm{X}}$						${ }^{\text {x }}$			$\stackrel{10.0}{6.5}$	${ }^{56.0}$		45.0	$\frac{\text { solid concrete HW } 14^{\prime} \text { W WW } 18^{\prime} \text { E SW } 18^{\prime}}{\text { concreteliron } \text { WW } 5^{\prime} \text { each }}$	stream channel upstream has a lot of vegetation over it	SCR174 SCR175
SCR181	Conemaugh Twp Railroad	3,704	380	1		railroad	x							19.0	20.0			Masonry 2 SWs, 25^{\prime} each HW-21' high	looks fine	SCR181
SCR182	Railroad	1,562	${ }^{20}$	2		railroad	x					60		5.0	4.0	6.0		MSRY-S WW-20' Wide HW 15^{5} high/288 wide	All water going under south side	SCR182
SCR183	Pennot 403	2,121	${ }^{300}$		x						X			10.0	30.0			Concrete 2 WWS $14{ }^{\text {a each }}$ HW 13 high	Large boulders on both sides of stream	SCR183
SCR184	Shade Twp	$\stackrel{2,354}{ }$	311 50	1	x						x				${ }^{27.0}$			Concretel builit over bricks WWW 20. Wide HW $15.5{ }^{\text {a }}$ ' high	ESW 15 'wide	SCR184
SCR185	Shade Twp	${ }^{235}$	50	1		road	x							4.5	$\frac{11.0}{315}$			Concrete 2 WWs 11° Each HW 6 ' high	Looks fairly new, constructed well	SCRR185
SCR190	Shade Twp	1,746 19172	$\stackrel{268}{65}$	4	X						X			8.5 15	31.5			Msy S WW 11^{2} NWW $9^{\text {c }}$ Wooden bridge build on I beams	ns heavil rusted, plants coming oft, beams loose, bridge in bad con	SCR190
SCR193 SCR200	$\xrightarrow{\text { Penn Dot } 403}$ RR Shade Twp	19,172 3,897	${ }^{662}$	$\stackrel{4}{2}$	x \times	RR					x x			10.5 15.0	63.0 15.0	${ }^{3.0}$	45.0			SCR193
SCR201	Railroad bridge	17,173	1.920	1	\times						x				120.0			each		
SCR202	Railroad bridge	3,960	560	1	X						X			10.0	56.0		45.0	Concrete built of Wood and steel E WW 16. Wide WSW 8 ' wide	Ws buirt out or Mssy brige has steel archs old but still ooks goed	SCR201
SCR203	Railirad bridge	4,242	572	1	x						X			11.0	52.0			mssy holds up sides	good	SCR203
SCR204	RR	418	80		X						X			5.5	14.5		60.0	cement holds up sides, steel top	good	SCR204
SCR205	RR	5,660	702	1	X						X			13.0	54.0		15.0	Concrete holds up bridge SW 60°	Water hits sW beiore running under bridge	SCR205
SCR206	$\frac{\mathrm{RR}}{\text { RR }}$	$\xrightarrow{248}$	$\stackrel{42}{273}$	1		RR	x				${ }^{\text {x }}$			${ }^{7} 7.0$	$\stackrel{6.0}{42.0}$				Water runs along WW betore going under culvert	SCR206 SCR207
SCR208	${ }_{\text {RR }}$	$\stackrel{2}{2}$	285	1	x						x			10.0	28.5			Bridge Abutments made of msy and concrete	Flowing well	SCR208
SCR212	(Krings)	42,000	2,100	2	\times						x			20.0	105.0			Concrete Steel beamed bridge	most water flowing in north end of bridge bridge built in 1936	SCR212
SCR213	Railrad	132	32	1		RR	x							3.5	9.0			Concrete HW 5.5 ' 'igh 2 SWs extend 25 'to highway culvert	Nothing really flowing in creek	SCR213
SCR214	Railroad Bridge Fermale	45,079	1,680	${ }^{3}$							x			16.0	105.0	6.0		Concrete base bridge buill out of steel and wood.		SCR214
SCR215	${ }_{\text {PennDot Eisenhower BLVD. }}^{\text {Abandonded Rairoad Bridge }}$	45,000 24,93	$\xrightarrow{2,250} 1.450$	$\frac{2}{2}$							$\frac{\mathrm{x}}{\mathrm{x}}$			20.0 14.5	$\stackrel{112.5}{100.0}$	4.0 10.0	30.0	$\frac{\text { concrerete base bridge built out of steel }}{\text { Buit on concrete foundation wood and steel }}$	Built by Bethlehem Steel Co. 1923 Bridge is old and Deterirating	$\frac{\text { SCR215 }}{\text { SCR216 }}$
SCR224	RR Richland Twp	105	27	1		RR	x					0		3.0	9.0			concrete HW 6 ' high 2 SWW 4 each	east SW cracked $\sim 1 / 2$ washed away	SCR224
SCR225	RR Richland Twp	4,192	520	1		RR	X					0		13.0	40.0		45.0	Steel l beams, steel top, NWW 14 S WW12'	W extends from S WW another 266^{\prime} creek hits NWW then goes und	SCR225
SCR226	Penn Dot Frankkin street	${ }^{59,943}$	5,472	1	X						x			24.0	228.0			Concrete E WW $16 \cdot$ W SW 24	Steel beamed bridge	SCR226
SCR40	Geistown	105	27	1		road	x							3.0	9.0			mssy HW 4 ' high	wooden sidewals go on for 1000 of feet	SCR40
${ }_{\text {SCR41 }}$	$\frac{\text { Geistown }}{\text { PENNDOT }}$	$\stackrel{456}{919}$	$\stackrel{77}{150}$	1		$\xrightarrow{\text { road }}$ read	¢					0		7.0	11.0			solid cement HW $9.55^{\text {c }}$ Cement botom	Cement SW run about 80^{\prime} Ong $5^{\text {W }}$ WW on end of SW	SCR41
SCR45	Conemaug ${ }^{\text {Twp }}$	$\stackrel{\text { 1,305 }}{ }$	${ }^{176}$	1	\times	road					x			7.5 11.0	$\stackrel{20.0}{16.0}$					
SCR47	Conemaugh Twp	849 873	${ }^{144}$	1	X						x			7.0	20.5		45.0	msty-concrete H W-12 2^{2} N-WW-4	SWW-9 9 very Small Wateratal Under bridge	SCR47
SCR48 SCP449	${ }_{\text {Private }}$	373 580	${ }_{98}^{63}$	1	+						X \times \times			7.0	$\stackrel{9.0}{14}$			(E) WW-17 Wide (W)-10. Wwide-buried	Wooden Bridge	${ }^{\text {SCR48 }}$
${ }_{\text {SCR468 }}$	${ }^{\text {Privale }}$	${ }_{300}^{500}$	${ }^{98}$	1	X	road	x				${ }^{\text {x }}$			5.0	${ }_{12}^{12.0}$				Flowing well	${ }^{\text {SCR49 }}$ SCR68
SCR69	Private	213	43	1	X						X			5.0	8.5			Concrete SSW-8. ${ }^{\text {NWW-8 }}$		SCR69
SCR70 SCR73	${ }_{\text {Conemaugh }}$ Conp	400 109	80 15	1		${ }_{\substack{\text { road } \\ \text { road }}}$	X X					1.5		5.0 3.0	16.0		45.0	Concrete E(SWW-7wide HW-7High	W(WW)-14' Wide Water hits WW Before Going under Bridge	${ }^{\text {SCR7\% }}$ SCR73
SCR74	PENNDOT 403	550	${ }_{110}$	1	X						x			5.0	2.0		45.0	Concrete-SWW-12' wide, SW 8 high	N -SW-8.8 Buried	SCR74
${ }_{\text {SCR75 }}$	PENNDOT 403	${ }^{559}$	${ }^{102}$	1		road	x							6.0	$\stackrel{17.0}{110}$		30.0	NSW-13's ${ }^{\text {S WWW-15' }}$	rocks and blocks hold wo sides	${ }^{\text {SCR775 }}$
SCR79	Private	${ }_{394}$	${ }^{66}$	1	X						X			6.0	${ }^{12.0}$			Concrete 2 WWS $8^{\text {e each }}$ HW10'	rocks and blocks hold up sides	${ }_{\text {SCR79 }}$
SCR80	Private	607	96	1	X						X			8.0	12.0			Concrete-2 WWs 5 ' high each		SCR80

Box Culvert / Box Bridge Capacity Calculation Sheet

Watershed: \quad Stonycreek
$\begin{aligned} & \text { Completed by: } \\ & \text { Checked by: }\end{aligned}$
Checked by:
Date(s): \quad NOTE: Different parameters assigned to CMP and RCP culverts in capacity colum

415

Elipitical Culverts Calculation Sheet

$\begin{array}{ll}\text { H = iament } & \text { CMP }=\text { Corrugated Metal Pipe } \\ \text { HT }=\text { Height } & \text { CPP }=\text { Corrugated Polyethylene Pipe }\end{array}$
$\mathrm{W}=$ Wioth $\quad \mathrm{BCCMP}=$ Bituminous Coated Corrugated Metal Pipe
Date(s): NOTE: Different parameters assigned to CMP and RCP culverts in capacity column

188
necked by: Date(s):

D.
 DATA COLLECTION FORMS (FORMS A, C - J, O)

0		FORM D - PROPOSED FLOOD CONTROL PROJECT								SHEET \qquad OF \qquad 1		
WATERSH Name: Municipality County:	D STonccer alername Boro AMar	FORM COMPLETED BY Name: Telephone: \qquad Date:			TYPICAL TYPES OF FLOOD CO Channel Excavation / Widening Channel Realignment Rock Riprap					NTROL PROJECTS Levee Gabions Pipe Channel		Dams Floodwall Concrete Lining
For County Use:												
Map ID No.	Type of Flood Control Project	$\begin{aligned} & \text { Stu } \\ & \hline \mathrm{YES} \end{aligned}$ Prelim.	Phase	No	Year Constr. Planned	Projected Compltn. Date	$\begin{gathered} \text { Expected } \\ \text { Life } \\ \text { Yrs. } \\ \hline \end{gathered}$	Design Frequency Yrs.	Flood Discharge C.F.S	Map ID No. Form A*	Owner Name, Address, and Phone	
D-	HGRE ARE No Proposed Fioud somae: provers											
D-												
D-												
D-												
D-												
D-												
D-												

[^2]

JF \qquad -

--n-m-n | 1 |
| :--- |

$\xrightarrow{2}$

4-3

$-$

\qquad OF \qquad

Diagram each system on the appropriate map. Establish map points to show changes in system elements,
 pipe size, or pipe direction. (If unknown. outline the system extent.) Complete this form only where specific
 information on construction is available. Use a separate form for each system. Identify the points within a
system consecutively (ex. G-1,G-2,G-3). Start the first point in each additional system 20 numbers higher

$\begin{gathered} \text { Map I.D. } \\ \text { No. } \\ \hline \end{gathered}$		System's Elements (x)			Measurements *				Material	Year Constr.	Design Data Available	Contact Person Name and Phone	Name of FinalOwnership andMaintenance Responsibility			
		Pipe	Channel / Swale													
From	To				Pipe	Open Channel	Swale	D						TW	B	Depth
G-	G-	Borra:														
G-	G-															
G-	G-															
G-	G-															
G-	G															
G-	G-															
G-	G-															
G-	G-															
G-	G-															
G-	G-															
G-	G-															
G-	G-															
G-	G-															
G-	G-															
G-	G-															

[^3]\qquad
\qquad

UPPER YODER TOWNSHIP SUPERVISORS

Cambria County
302 Elim Street
Johnstown, PA 15905
(814) $255-5243$

Fax (814) 255-1805

\author{

Mr. Kob Piper, Director
 Cambria County Conservation District
 401 Candlelight Drive
 Suite 221
 Ebensburg, PA 15931
 | Subject: | Stonycreek River Act 167 Stormwater |
| :--- | :--- |
| | Management Plan |
| | Phase I-Scope of Study |

}

Dear Robs:
Attached, please find one copy of Form A - Stormwater Problem Areas and one "marked-up" copy of Sheet No. UYT-ZM-1, Zoning Map. This information is submitted for your use in completing the subject project. Upper Yoder Township could provide the attached map in digital form along with Township wide aerial mapping in digital form.

Please contact this office if you have any questions or require additional clarification or information to complete your project. My email address is: kmesko@charter.net

Sincerely,

UPPER YODER TOWNSHIP

Kenneth A. Mesko, P.E.
Township Engineer

FORM A - STORM WATER PROBLEM AREAS																										
WATERSHED Name:Sronkcekk Rivie Municipality: Ppen Tonen Tw County: Camera		FORM COMPLETED BY 					Before Filling Out Form, See Instructions On Back																			
		For County Use:																								
MAP NO. *	A-1	A-2		A-4	A-5		A-7	A-8	A-																	
Types of Storm Water Problems																										
Flooding	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark																			
Accelerated Erosion																										
Sedimentation																										
Landslide																										
Groundwater																										
Water Pollution																										
Other (Explain)																										
Explanation Line No. 1																										
Cause (s)																										
Storm Water Volume	1	\checkmark	\checkmark	\checkmark	-	\checkmark	\cdots																			
Storm Water Velocity	2	\checkmark	\checkmark	\checkmark	\cdots	\checkmark																				
Storm Water Direction	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark																				
Water Obstruction																										
Other (Explain)																										
Explanation Line No.																										
Frequency																										
Year Most Recent Occurred																										
Year First Known Occurred																										
Regularity																										
More Than 1 Year																										
Less Than 1 Year	\checkmark	\sim	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark																			
Only During Agnes																										
Duration (If Applicable)																										
Less Than 1 Day	\checkmark																									
1 Day + (Enter Days)																										
Property Damage																										
Loss of Life/Vital Services																										
Private	\checkmark	\checkmark	\checkmark	\checkmark	2	\checkmark	\checkmark																			
More Than One Owner																										
Types of Properties																										
Number of Properties																										
Explanation Line No.																										
Solutions																										
Suggested																										
Explanation Line No.																										
Formally Proposed																										
* Include Map ID No. if found on any other form listing proposed facilities.																										
EXPLAINATION LINE(S)																										
1) Fipm Not cinnsivt																										
2)																										
3)																										
4)																										
5)																										
6)																										
7)																										

Begin with A. 1 as the first map number to identify the first' storm water problem area. llustrate the defined problem on the watershed map provided, and identify it with its map number.

For each storm water problem area within your municipality, enter the map identification number at the head of the column. Describe the probtem by placing a check (4 in the appropriate blocks of the column under this map identification number.

When an additional explanation is required, write the line number(s) used in the column marked "Explanation Line No. (s)".Example 1, 2-3, etc. :

Definitions

Storm Water Problem Area

An area that defines the farthest extent of a storm water problem, including any area that experiences property damage, inundation, accelerated erosion, surface water pollution, groundwater pollution, landslides, or any other problem as a result of storm water runoff.

Groundwater

Water in the ground below the water table: '-
Accelerated Erosion
The removal of the surface of the land through the combined action of man's acivities and the natural processes at a rate greater than would occur because of the natural process alone.

Sedimentation

The process by which soil or other surface materials, transported by surface water, is deposited on stream bottoms.
Water Obstruction
Any dike, bridge, culvert, wall, wingwall, filt, pier, wharf, embankment, abutment, or other structure located in, along, across, or projecting into any watercourse, floodway, or body of water.

EXPLANATION LINES (continued)

Terry Ostrowski

From: Robb Piper [piper@co.cambria.pa.us]
Sent: Monday, July 07, 2003 10:20 AM
To: Terry Ostrowski
Subject: Re: Berlin Boro - Stonycreek
Just got a call from Stoystown and they have no problems, please count them in the response tally for the scope of study

From: Terry Ostrowski -----
From: Terry Ostrowski
To: Robb Piper (piper@co.cambria.pa.us)
Sent: Thursday, June 26, 2003 2:47 PM
Subject: Berlin Boro - Stonycreek
Robb;
FYI.
Kerry Claycomb from Berlin Boro, Somerset Co. contact me and will be sending their problem area information directly to our office.

Terry

WATERSHED		FORM COMPLETED BYName: Greg WalkerTelephone: $\frac{814-267-3212}{\text { Duvist } 192005}$Date:					Before Filling Out Form, See Instructions On Back\qquad					
Name: Municipality: County: $\frac{\text { Gres Wolker }}{\text { Stonyereek TuP }}$												
MAP NO. *	A-1	A- 2	A- 3	A-	A-	A-	A-	A-	A-	A.	A-	A-
Types of Storm Water Problems												
Flooding	$\stackrel{ }{2}$	-	\sim									
Accelerated Erosion												
Sedimentation	\ldots	\sim	\sim									
Landslide												
Groundwater												
Water Pollution												
Other (Explain)												
Explanation Line No. (On Back)	5	\sim	\sim									
Cause. (s)												
Storm Water Volume												
Storm Water Velocity												
Storm Water Direction												
Water Obstruction	17	$\stackrel{ }{2}$	\sim									
Other (Explain)												
Explanation Line No. (On Back)												
Frequency												
Year Most Recent Occurred												
Year First Known Occurred												
Regularity												
More Than 1 Year	\sim	-	\sim									
Less Than 1 Year												
Only During Agnes												
Duration (If Applicable)												
Less Than 1 Day												
1 Day + (Enter Days)	5	2	2									
Property Damage												
Loss of Life/ Nital Services												
Private												
More Than One Owner												
Types of Properties												
Number of Properties												
Public (List Types)												
Explanation Line No. (On Back)												
Solutions												
Suggested												
Explanation Line No. (On Back)												
Formally Proposed												
Explanation Line No. (On Back)		for	lis	g.pror		cill						

A-1 - Swamp Hollow Road TR-509. This road is located at the headwaters of the stonycreek river. This road experiences constant flooding in the spring of the year. Water Swells to a depth of 12 inchs on approximately one tenth of a mile of this roadway. Beaver Dams, sediment and thick growth seem to have completely clogged the main streambed. Average times this road floods is approximately 12 times per year. This continuously wash road material such as gravel from the raid bed and causes sedimentation in the streambed.

A-2 Batterer Bridge Road - TR -539. A portion of this road his flooding during more heavy romstorms caused by beaver dimes that backup the drainage of cuaterbunoff. The dams cause backups of sedimentation and causes heap vesitation growth in the streambed.
A. 3 Piney Run Road $T R-726$ A portion of this road has flooding during heavy rainstorms caused by beaver dams. This area is upstream from the Battier Bridge Rod. Heavy vegitation growth is also in the streambed
N / A

* Enter the storm water problem area's Map ID No., if the proposed project will solve or reduce any/all of an identified drainage problem.
N/A

\qquad OF \qquad

\qquad OF \qquad

[^4]\qquad OF \qquad

WATERSHED Name: Municipality: County: \qquad			FORM CO Name: Telephone: Date:	LETED		INSTRUCTIONS On the map for proposed storm water collection systems, diagram each proposed systern. Indicate a map point to show changes in system elements, pipe size, pipe direction and conneclion															
						On the map for proposed storm water collection systems, diagram each proposed system. Indicate a map point to show changes in system elements, pipe size, pipe direction and connections to existing systems. For proposed addilions to existing systems. dagram only the additions and their connection point into the existing system. Complete a separate form for each oroposed. new system and one for each existing system having one or more proposed additions. Idenlify the points within a system conseculively (ex. H-1, H-2, H-3). Start the first point in each addilional system 20 numbers higher (if $\mathrm{H}-3$ ends one system, begin the next with $\mathrm{H}-23$). Be sure to show the point where proposed additions connect into existing systems, using the map point number from the existing system form and map. See Sample Diagrams and Form on Reverse.															
$\begin{gathered} \text { Map I.D. } \\ \text { No. } \\ \hline \end{gathered}$		System's Elements (x)				Measurements *			Material	$\begin{gathered} \text { Map I.D. } \\ \text { Nos. }{ }^{* *} \\ \text { Form A } \end{gathered}$	Proposed Const. Dates		Design Data Avail.	$\begin{gathered} \text { Contact Person } \\ \text { Name and } \\ \text { Phone } \\ \hline \end{gathered}$	Name of FinalOwnership andMaintenance Responsibility						
		Open Channel / Swale																			
From	To				Pipe	Open Channel	Swale	TW			B	Depth				Start	End				
H-	H-																				
H-	H-																				
H	H-																				
H-	H																				
H-	H-																				
H	H-																				
H	H																				
H	H																				
H	H																				
H	H																				
H	H-																				
H-	H																				
H	H -																				
H	H-																				
H-	H-		;																		

Examannownes

1) A-1 FLOQOING FROM RIVER ALSO OUERFLOWING SEWER SYSTEM 2) A-2 STRCAQ SEDIMENTATLON ACCUMULATING AT DEBRES BASINS

Begin with A. 1 as the first map number to identify the first' storm water problem area. llustrate the defined problem on the watershed map provided, and identify it with its map number

For each storm water problem area within your municipality, enter the map identification number at the head of the column. Describe the problem by placing a check (4 in the appropriate blocks of the column under this map identification number.

When an additional explanation is required, write the line number(s) used in the column marked "Explanation Line No. (s)". Example 1, 2-3, etc. :

If storm water problem occurred during and after Agnes, describe the frequency of the problem after Agnes.
explanation lines to list the types of public property damages ,e.g.roadways, hospitals etc.

Enter the line no. (s) used to list the map ID no. (s) for the proposed facilities.

Definitions

Storm Water Problem Area

An area that defines the farthest extent of a storm water problem, including any area that experiences property damage, inundation, accelerated erosion surface water pollution, groundwater pollution, landslides, or any other problem as a result of storm water runoff.

Groundwater

Water in the ground below the water table: -

Accelerated Erosion

The removal of the surface of the land through the combined action of man's activities and the natura processes at a rate greater than would occur because of the natural process alone.

Sedimentation

The process by which soil or other surface materials, transported by surface water, is deposited on stream bottoms.

Water Obstruction

Any dike, bridge, culvert, wall, wingwall, fil, pier wharf, embankment, abutment, or other structure located in, along, across, or projecting into any watercourse, floodway, or body of water.

EXPLANATION LINES (continued)

Mr. Robb Piper
Cambria County Conservation District
401 Candlelight Drive, Suite 221
Ebensburg, PA 15931

Transmittal
Stonycreek River Stormwater Plan Southmont Borough, Cambria County

Dear Mr. Piper:
In accordance with your request for information, enclosed is the stormwater forms packet from Southmont Borough, Cambria County.

Sincerely yours,
Paul C. Rizzo Associates, Inc.

Watershed/Land Use Planner
MWL/RJF/ljr
Enclosure
AUG 192005
pc: Southmont Borough Supervisors

Begin with A． 1 as the first map number to identify the first＇storm water problem area．Illustrate the defined problem on the watershed map provided，and identify it with its map number．

For each storm water problem area within your municipality，enter the map identification number at the head of the column．Describe the problem by placing a check（ 4 in the appropriate blocks of the column under this map identification number．

When an additional explanation is required，write the line number（s）used in the column marked＂Explanation Line No． （s）＂．Example $1,2-3$ ，etc．

Enter the line no．（s）

Definitions

Storm Water Problem Area

An area that defines the farthest extent of a storm water problem，inclucing any area that experiences property damage，inundation，accelerated erosion， surface water poliution，groundwater pollution， landslides，or any other problem as a result of stom water runoff．

Groundwater

Water in the ground below the water table．－
Accelerated Erosion
The removal of the surface of the land through the combined action of man＇s activities and the natura processes at a rate greater than would occur because of the natural process alone．

Sedimentation

The process by which soil or other surface materials，transported by surface water，is deposited on stream bottoms．

Water Obstruction

Any dike，bridge，culvert，wall，wingwall，filt，pier wharf，embankment，abutment，or other structure located in，along，across，or projecting into any watercourse，floodway，or body of water．

EXPLANATION LINES（continued）

\qquad
\qquad

[^5]
\qquad

* See measurement key on reverse side.
\qquad OF \qquad

WATERSHED Name: Cheney Ron Municipality: Southmont Bore County: \qquad Cambria			FORM COMPLETED BY Name: Telephone: \qquad Mark WiLazzair $84536-6767$			INSTRUCTIONS On the map for proposed stom water collection systems, diagram each proposed system. Indicate a map point to show changes in system elements, pipe size, pipe direction and connections to existing systems. For proposed additions to existing systems. diagram only the additions and their connection point into the existing system. Complete a separate form for each proposed. new system and one for each existing system having one or more proposed additions. fienlify the points within a system consecutively (ex. H-1, H-2, H-3). Stant the firsl point in each additional system 20 numbers higher (if $\mathrm{H}-3$ ends one system, begin the next with $\mathrm{H}-23$). Be sure to show the point where proposed additions connect into existing systerns. using the map point number from the existing system form and map. See Sample Diagrams and Form on Reverse.																	
$\begin{gathered} \text { Map I.D. } \\ \text { No. } \end{gathered}$		System's Elements (x)			Pipe	Measurements*			Material	Map I.D. Nos.** Form A	ProposedConst. Dates		Design Data Avail.	$\begin{gathered} \text { Contact Person } \\ \text { Name and } \\ \text { Phone } \\ \hline \end{gathered}$	\qquad Name Ownership and Maintenance Responsibility								
		Open Channel / Swale																					
From	To				Pipe	Open Channel	Swale	D			TW	B				Depth	Start	End					
H	H-																						
H	H-																						
H-	$\mathrm{H}-$																						
H	H-																						
H	H-																						
H	H-																						
H	H-																						
H	H-																						
H	H-																						
H-	H-																						
H	H-																						
H	H-																						
H-	H.																						
H.	H-																						
H-	H-		;																				

[^6]| | | | | ener |
| :---: | :---: | :---: | :---: | :---: |
| | | | (400 | |
| | | | - | com |
| | | | | |
| | | | Suefluld femamp | |
| | | | NA | |
| | | - | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |

$\begin{aligned} & \text { ED } \\ & \text { STONYCREEK } \\ & : \text { SOMERSET TWP } \\ & \text { SOMERSET CO. } \end{aligned}$		FORM COMPLETED BY Name: J. BTANCOTTI Telephone: 814-445-4675 Date: 6/30/01					Before Filling Out Form, See Instructions On Back For County Use:					
MAP NO. *	A-1	A-2	A-	A.	A-	A-	A.	A-	A-	A.	A-	A-
Types of Storm Water Problems												
Flooding	r	\bigcirc										
Accelerated Erosion												
Sedimentation	\checkmark	γ										
Landslide												
Groundwater												
Water Pollution												
Other (Explain)												
Explanation Line No. (On Back)												
Cause (s)												
Storm Water Volume												
Storm Water V Velocity												
Storm Water Direction												
Water Obstruction												
Other (Explain)												
Explanation Line No. (On Back)	\checkmark	\checkmark										
Frequency												
Year Most Recent Occurred	2004	2004										
Year First Known Occurred												
Reqularity												
More Than 1 Year	γ	\checkmark										
Less Than 1 Year												
Only During Agnes												
Duration (If Applicable)												
Less Than 1 Day												
1 Day + (Enter Days) +1	\checkmark	\checkmark										
Property Damage												
Loss of Life/vital Services												
Private	\checkmark	\checkmark										
More Than One Owner												
Types of Properties												
Number of Properties												
Public (List Types)												
Explanation Line No. (On Back)												
Solutions												
Suggested	\checkmark	\checkmark										
Explanation Line No. (On Back)												
Formally Proposed												
Explanation Line No. (On Back)												

Begin with A. 1 as the first map number to identify the first' storm water problem area. Illustrate the defined problem on the watershed map provided, and identify it with its map number.

For each storm water problem area within your municipality, enter the map identification number at the head of the column. Describe the problem by placing a check (4 in the appropriate blocks of the column under this map identification number.

When an additional explanation is required, write the line number(s) used in the column marked "Explanation Line No. (s) ${ }^{n}$. Example 1, 2-3, etc.

Enter the line no. (s) -
used to list the map $1 D$ no. (s) for the proposed facilities.

Definitions

Storm Water Problem Area

An area that defines the farthest extent of a storm water problem, including any area that experiences property damage, inundation, accelerated erosion, surface water pollution, groundwater pollution, landslides, or any other probiem as a result of storm water runoff.

Groundwater

Water in the ground below the water table. .-

Accelerated Erosion

The removal of the surface of the land through the combined action of man's activities and the natural processes at a rate greater than would occur because of the natural process alone.

Sedimentation

The process by which soil or other surface materials, transported by surface water, is deposited on stream bottoms.

Water Obstruction

Any dike, bridge, culvert, wall, wingwall, 解, pier, wharf, embankment, abutment, or other structure located in, along, across, or projecting into any watercourse, floodway, or body of water.

Begin with A. 1 as the first map number to identify the first' storm water problem area. lifustrate the defined problem on the watershed map provided, and identify it with its map number.

For each storm water problem area within your municipality, enter the map identification number at the head of the column. Describe the problem by placing a check (4 in the appropriate blocks of the column under this map identification number.

When an additional explanation is required, write the line number(s) used in the column marked "Explanation Line No. (s)'. Example 1, 2-3, etc.

If storm water problem occurred during and after Agnes, describe the frequency of the problem after Agnes.

Enter the line no. (s) used to list the map 10 no. (s) for the proposed facilities.

Definitions

Storm Water Problem Area

An area that defines the farthest extent of a storm water problem, including any area that experiences property damage, inundation, accelerated erosion, surface water pollution, groundwater pollution, landslides, or any other problem as a result of storm water runoff.

Groundwater

Water in the ground below the water table: -

Accelerated Erosion

The removal of the surface of the land through the combined action of man's activities and the natural processes at a rate greater than would occur because of the natural process alone.

Sedimentation

The process by which soil or other surface materials, transported by surface water, is deposited on stream bottoms.

Water Obstruction

Any dike, bridge, culvert, wall, wingwali, filh, pier, wharf, embankment, abutment, or other structure located in, along, across, or projecting into any watercourse, floodway, or body of water.

[^7]

SAMPLE DIAGRAM FOR SYSTEM TWO

SAMPLE FORM (System One Only)

Outline known areas where construction exists but construction data is unavailable.
\qquad
OF
\qquad

WATERSHEDName: STONYCREEKMunicipality: SOMERSET TWPCounty: $\mathrm{SOMERSET} \mathrm{CO}$.			FORM COMPLETED BY Name: J. BIANCOTTI Telephone: $\frac{814-445-4675}{8 / 12 / 05}$ Date:			INSTRUCTIONS On the map for proposed storm water collection sysiems, diagram each proposed systert. Indicate a map point to show changes in system elements, pipe size. pipe direction and connections to existing systems. For proposed additions to existing systems, diagrem onty the additions and their connection point into the existing system. Complete a separate form for each proposed. new system and one for each existing system having one or more proposed addilions. Identify the points wilhin a system conseculively (ex. H- $\uparrow, \mathrm{H}-2, \mathrm{H}-3$). Slarl the first point in each additional system 20 numbers higher (if $\mathrm{H}-3$ ends one system, begin the next with $\mathrm{H}-23$). Be sure to show the point where proposed addilions connect into existing systems, using the map point number from the existing system form and map. See Sample Diagrams and Form on Reverse.																
$\begin{gathered} \text { Map I.D. } \\ \text { No. } \\ \hline \end{gathered}$		System's Elements (x)			$\frac{\text { Pipe }}{\mathrm{D}}$	Measurements *			Material	$\begin{gathered} \text { Map I.D. } \\ \text { Nos.** } \\ \text { Form A } \\ \hline \end{gathered}$	Proposed Const. Dates		Design Data Avaii.	$\begin{gathered} \hline \text { Contact Person } \\ \text { Name and } \\ \text { Phone } \\ \hline \end{gathered}$	Name of Final Ownership and Maintenance Responsibility							
			anne																			
From	To				Pipe	Open Channe!	Swale	TW			B	Depth				Start	End					
H-	H-	NONE-	DOES NOT	APPLY																		
H-	H-																					
H-	H-																					
H-	H																					
H_{-}	H-																					
H-	H-																					
H-	H-																					
H-	H-																					
H-	H-																					
H-	H																					
H-	H-																					
H-	H-																					
H	H-																					
H-	H-																					
H-	H-		;																			

[^8]
SAMPLE DIAGRAMS

ADDITION TO EXISTING SYSTEM

SAMPLE FORM (New System Only)

Begin with A. 1 as the first map number to identify the first' storm water problem area. Illustrate the defined problem on the watershed map provided, and identify it with its map number.

For each storm water problem area within your municipality, enter the map identification number at the head of the column. Describe the problem by placing a check (4 in the appropriate blocks of the column under this map identification number.

When an additional explanation is required, write the line number(s) used in the column marked "Explanation Line No. (s)". Example 1, 2-3, etc. =

Definitions

Storm Water Problem Area

An area that defines the farthest extent of a storm water problem, including any area that experiences property damage, inundation, accelerated erosion surface water pollution, groundwater pollution, landslides, or any other problem as a resuit of storm water runoff.

Groundwater

Water in the ground below the water table: --

Accelerated Erosion

The removal of the surface of the land through the combined action of man's activities and the natura processes at a rate greater than would occur because of the natural process alone.

Sedimentation

The process by which soil or other surface materiais, transported by surface water, is deposited on stream bottoms

Water Obstruction
Any dike, bridge, culvert, wall, wingwall, fill, pier wharf, embankment, abutment, or other structure located in, along, across, or projecting into any watercourse, floodway, or body of water.

October 12, 2005

Cambria County Conservation District
401 Candlelight Drive, Suite 221

Ebensburg, PA 15931
ATTN: Kob Piper

STONYCREEK ACT 167 PLAN

STORMWATER MANAGEMENT
Dear Robby,
On behalf of Paint Township, we have completed the forms for the Stormwater Management Plan received at the Phase II Meeting on June 22, 2005. The completed forms are enclosed with this memo as well as a map of the areas contributing to the Stonycreek Watershed.

If you have any questions or concerns, please contact us at (814) 445-6551.

THE EADS GROUP, INC. (Somerset)

By: Jeffrey S. Haynal, E.I.T.
cc: File \# 6036-G-01, w/ enc.
Paint Township, w/ enc.
Pat Mulcahy
Central File81 Baltimore St. Suite 600 (814) 944-5035 (814) 443 -2748 Fax

* Enter the storm water problem area's Map ID No., if the proposed project will solve or reduce any / all of an identified drainage problem.

October 12, 2005

ATTN: Rob Piper
STONYCREEK ACT 167 PLAN
STORMWATER MANAGEMENT
Dear Rob,
On behalf of Paint Borough, we have completed the forms for the Stormwater Management Plan received at the Phase II Meeting on June 22, 2005. The completed forms are enclosed with this memo as well as a map of the areas contributing to the Stonycreek Watershed.

If you have any questions or concerns, please contact us at (814) 445-6551.

THE EADS GROUP, INC. (Somerset)

By: Jeffrey S. Haynal, E.I.T.
cc: File \# 6035-S-02, w/ enc.
Paint Borough, w/ enc.
Pat Mulcahy
Central File

0		FORM D - PROPOSED FLOOD CONTROL PROJECT							SHEET 3 OF 16		
WATERSHED		FORM COMPLETED BY Name: DENNIS Berkey Telephone: \qquad Date: $8-17-2005$			TYPICAL TYPES OF FLOOD CONTROL PROJECTS						
Name: Municipality County:	STONYCRESK Pand BaRoubli Somenset				Channel Excavation / Widening Channel Realignment Rock Riprap					Levee Gabions Pipe Chan	Dams Floodwall Concrete Lining
For County Use:											
Map ID No.	Type of Flood Control Project	Study Phase Begun			Year Constr. Planned	Projected Compltn. Date	Expected Life Yrs.	Design Flood			Owner Name, Adoress, and Phone
		YE		N0				Frequency Yrs.	Discharge C.F.S.		
		Prelim.	Final								
D- /	PIPE CHANNEL			x	2006	2006	100	50	75	$A-4$	UAKNOWN AT THIS TIME
D-2	PPE CHANNEL			x	2006	2006	100	50	12	$A-5$	PAINT BOROUGH PROPERTY CSK RAILROAD
D-3	PIPE CHANNEL			x	2006	2006	100	55	12		Fint Borgongh Frrall Sas Company
D-											
D-											
D-											
D-											

* Enter the storm water problem area's Map ID No., if the proposed project will solve or reduce any / all of an identified drainage problem.

[^9]\qquad OF \qquad

Name: STONYCREEK Name: DENNIS B=RKEY Municipality: /ANT BorsubH
\qquad DENNIS BERKEY Diagram each system on the appropriate map. Establish map points to show changes in system elements pipe size, or pipe direction. (If unknown, outline the system extent.) Complete this form only where specific County: Somerset Date: 8-17-2005 information on construction is available. Use a separate form for each system. Identify the points within a

County: SOMERSET			Date:	8-17-2005		For example, G-3 ends one system, so G-23 begins the next. See Sample Diagrams \& Form on Reverse.										
Map I.D. No.		System's Elements (x)			Measurements *				Material	Year Constr	Design Data Available	Contact Person Name and Phone	Name of FinalOwnership andMaintenance Responsibility			
		Pipe	Channel / Swale													
From	To				Pipe	Open Channel	Swale	D						TW	B	Depth
G- Q	G-P	\checkmark	Open		$18^{\prime \prime}$				CPP	1977		$\begin{aligned} & \text { Dennes Berkey } \\ & 814-467-6904 \end{aligned}$	PaIMT Eorougit			
G- 23	G- Q-P	\checkmark			$12^{\prime \prime}$				CPP			1	[
G- 24	G-0-P	\checkmark			$12^{\prime \prime}$				CPP							
G. P	G- 0	1			18"				CPP							
G-22	G- D	\checkmark			$12^{\prime \prime}$				CPP							
G- 0	G- N	\checkmark			$18^{\prime \prime}$				CPP							
G- 21	G- $0-N$	\checkmark			$12^{\prime \prime}$				CPP							
G- N	G. M	\checkmark			$18^{\prime \prime}$				CPP							
G- 18	G- $1-m$	\checkmark			$12^{\prime \prime}$				CPP							
G- 19	G-小㐋	\checkmark			$12^{\prime \prime}$				CPP							
G- M	G- L	\checkmark			$18^{\prime \prime}$				CPP							
G- 17	G-mbl	\checkmark			$12^{\prime \prime}$				CPP							
G-16	G-M-L	\checkmark			$12^{\prime \prime}$				CPP							
G- 15	G- M M-L	\checkmark			$12^{\prime \prime}$				CPP	12		17	12			
G- 6	G- K	\checkmark	;		$24^{\prime \prime}$				RCCP	1		1	V			

[^10]

[^11]\qquad OF \qquad
WATERSHED
Name: STWYCREEK
Municipality: IfINT BoRtubH

FORM COMPLETED BY

INSTRUCTIONS

Diagram each system on the appropriate map. Establish map points to show changes in system elements, Municipality: RINT BorbuGH Name: DENNIS BERKEY pipe size, or pipe direction. (If unknown, outline the system extent.) Complete this form only where specific

County: Someraset Telephone: $814-467-6904$ information on construction is available. Use a separate form for each system. Identify the points within a

Map I.D. No.		System's Elements (x)			Measurements*				Material	Year Constr.	Design Data Available	Contact Person Name and Phone	Name of FinalOwnership andMaintenance Responsibility			
		Pipe	Channel / Swale													
From	To				Pipe	Open Channel	Swale	D						TW	B	Depth
G- 5	G-E	\checkmark			$12^{\prime \prime}$				$C P$	1997		DaNANS LSERKEY $814-467-6904$	PANT Boroublt			
G- E	G- D	\checkmark			$15^{\prime \prime}$				CP\%							
G- 3	G- D	\checkmark			$12^{\prime \prime}$				$\triangle P P$							
G- 4	G- D	\checkmark			$12^{\prime \prime}$				CPP							
G- D	G- C	\checkmark			$15^{\prime \prime}$				$\triangle P P$							
G- F	G-C	\checkmark			$12^{\prime \prime}$				$C P P$							
G- 42	G-C	1			$12^{\prime \prime}$				CPp							
Q- C	G. B	\checkmark			$24^{\prime \prime}$				RCCP	5		H	5			
G-8	G-END	\checkmark			$36^{\prime \prime}$				RCCP	V		$\sqrt{7}$				
G-	G-															
G-	G-															
G-	G-															
G-	G-															
G-	G-											*				
G-	G-		;													

[^12]

* See measurement key on reverse side.

SYstem

System 4			FORM G - EXISTING STORM WATER COLLECTION SYSTEMS									SHEET \qquad OF \qquad						
WATERSHED Name: STONYREEK Municipality: RFANT BorduGH County: SomerseT			FORM COMPLETED BY Name: DENNIS BERKEY Telephone: 814-467-6904 Date: 8-17-2005			INSTRUCTIONS Diagram each system on the appropriate map. Establish map points to show changes in system elements, pipe size, or pipe direction. (If unknown, outline the system extent.) Complete this form only where specific information on construction is available. Use a separate form for each system. Identify the points within a system consecutively (ex. G-1,G-2,G-3). Start the first point in each additional system 20 numbers higher. For example, G-3 ends one system, so G-23 begins the next. See Sample Diagrams \& Form on Reverse.												
Map I.D. No.		System's Elements (x)			Measurements*				Material	Year Constr	Design Data Available	Contact Person Name and Phone	Name of Final Ownership and Maintenance Responsibility					
		$\frac{\text { Pipe }}{0}$	Channel / Swale															
From	To		Pipe	Open Channe!	Swale	TW	B	Depth										
G- 114	G- 115	4			$8^{\prime \prime}$				CFP	1999		DENNIS REREMy $814-467-6904$	Fraty \%roubif					
G- 115	¢ C-y	\checkmark			$8^{\prime \prime}$				cpp	1997		\downarrow	$\sqrt{1}$					
G-	G.																	
G-	G-																	
G-	G-																	
G.	G-																	
G-	G.																	
G-	G.																	
G-	G-																	
G-	G.																	
G-	G.																	
G-	G.																	
G-	G.																	
G-	G-											。						
G-	G-		\%															

Begin with A. 1 as the first map number to identify the first' storm water problem area. Illustrate the defined problem on the watershed map provided, and identify it with its map number.

For each storm water problem area within your municipality, enter the map identification number at the head of the column. Describe the problem by placing a check (4 in the appropriate blocks of the column under this map identification number.
When an additional explanation is required, write the line number(s) used in the column marked "Explanation Line No. (s)". Example 1, 2-3, etc.

Enter the line no. (s)

Definitions

Storm Water Problem Area
An area that defines the farthest extent of a storm water problem, including any area that experiences property damage, inundation, accelerated erosion, surface water pollution, groundwater polisution, landslides, or any other problem as a result of storm water runoff.

Groundwater

Water in the ground below the water table: -

Accelerated Erosion

The removal of the surface of the land through the combined action of man's activities and the natural processes at a rate greater than would occur because of the natural process alone.

Sedimentation

The process by which soil or other surface materials, transported by surface water, is deposited on stream bottoms.

Water Obstruction

Any dike, bridge, culvert, wall, wingwall, fill, pier, used to list the map ID no. (s) for the proposed facilities. wharf, embankment, abutment, or other structure located in, along, across, or projecting into any watercourse, floodway, or body of water.

EXPLANATION LINES (continued)

Mr. Rob Piper
Cambria County Conservation District
401 Candlelight Drive, Suite 221
Ebensburg, PA 15931

Transmittal
Stonycreek River Stormwater Plan
Lower Yoder Township, Cambria County
Dear Mr. Piper:
In accordance with your request for information, enclosed is the stormwater forms packet from Lower Yoder Township, Cambria County.

Sincerely yours,

Paul C. Rizzo Associates, Inc.

Mark W. Lazzari
Watershed/Land Use Planner
MWL/RJF/ljr
Enclosure
pc: Lower Yoder Township Supervisors

Begin with A. 1 as the first map number to identify the first' stom water probiem area. Itustrate the defined problem on the watershed map provided, and identify it with its map number.

For each storm water problem area within your municipality, enter the map identification number at the head of the column. Describe the problem by placing a check (4 in the appropriate blocks of the column under this map identification number.

When an additional explanation is required, write the line number(s) used in the column marked "Explanation Line No. (s)". Example 1, 2-3, etc.

Enter the line no. (s) used to list the map ID no. (s) for the proposed facilities.

Definitions

Storm Water Problem Area

An area that defines the farthest extent of a storm water problem, including any area that experiences property damage, inundation, accelerated erosion, surface water pollution, groundwater polbution landstides, or any other problem as a result of storm water runoff.

Groundwater

Water in the ground below the water table: --

Accelerated Erosion

The removal of the surface of the land through the combined action of man's activities and the natura processes at a rate greaker than would occur because of the natural process alone.

Sedimentation

The process by which soil or other surface materials, transported by surface water, is deposited on stream bottoms.

Water Obstruction

Any dike, bridge, culvert, wall, wingwalk, fil, pier, wharf, embankment, abuiment, or other structure located in, along, across, or projecting into any watercourse, floodway, or body of water.

	-
	-
	.
	-

* Enter the storm water problem area's Map ID No., if the proposed project will solve or reduce any / all of an identified drainage problem.
\qquad

			FORM G - EXISTING STORM WATER COLLECTION SYSTEMS								SHEET \qquad OF \qquad 1		
WATERS Name: Municipa County:	SHED Litte lity: Lo Cam	$\frac{\text { Creek }}{2 d e r t}$	FORM COMPLETED BY Name: \qquad MarkW.Laz2ari $814-536-6767$			INSTRUCTIONS Diagram each system on the appropriate map. Establish map points to show changes in system elements, pipe size, or pipe direction. (If unknown, outline the system extent.) Complete this form only where specific information on construction is available. Use a separate form for each system. Identify the points within a system consecutively (ex. G-1,G-2,G-3). Start the first point in each additional system 20 numbers higher. For example, G-3 ends one system, so G-23 begins the next. See Sample Diagrams \& Form on Reverse.							
$\begin{gathered} \text { Map I.D. } \\ \text { No. } \\ \hline \end{gathered}$		System's Elements (x)			Measurements *				Material	Year Constr.	Design Data Available	Contact Person Name and Phone	Name of FinalOwnership andMaintenance Responsibility
From	To	Pipe	Open Channel	Swale	$\frac{\text { Pipe }}{\text { D }}$	TW	B	Depth					
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-							*					
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-											*	
G-	G-		\%										

\square $\mathrm{OF} \quad 1$

WATERSHED Name: \qquad Lithe mill Creek Municipality: Lower Vodortul) County: \qquad Cambria			FORM COMPLETED BY Name: Telephone: Date: \qquad			INSTRUCTIONS On the map for proposed storm water collection systems, diagran each proposed system. Indicate a map point to show changes in system elements, pipe size, pipe direction and connections to existing systems. For proposed additions to existing systems. diagram only the additions and their connection point into the existing system Complete a separate form for each proposed. new system and one for each existing system having one or more proposed additions. Identify the points wilhin a system consecutively (ex, H-1, H-2, H-3). Start the first point in each additonal system 20 numbers higher (if $\mathrm{H}-3$ ends one system, begin the next with $\mathrm{H}-23$). Be sure to show the point where proposed additions connect into existing systems, using the map poinl number from the existing system form and map. See Sample Diagrams and Form on Reverse.																
$\begin{gathered} \text { Map I.D. } \\ \text { No. } \\ \hline \end{gathered}$		System's Elements (x)			Measurements*				Material	$\begin{gathered} \text { Map I.D. } \\ \text { Nos.** } \\ \text { Form A } \end{gathered}$	Proposed Const. Dates		Design Data Avail.	$\begin{gathered} \text { Contact Person } \\ \text { Name and } \\ \text { Phone } \\ \hline \end{gathered}$	Name of FinalOwnership andMaintenance Responsibility							
		Pipe	Open Channel / Swale																			
From	To				Pipe	Open Channel	Swale	D			TW	8				Depth	Start	End				
$\mathrm{H}-$	H-																					
H	H-																					
H	H																					
H	H-																					
H	H-																					
H	H-					Λ																
H	H-																					
H	H																					
H	H-																					
H	H-																					
H	H-																					
H	H																					
H	H-																					
H	H-																					
H	H-		;																			

[^13]

A-1 - Washes Two Vital Roads out And Exposes A main to a Gas hines out when it washes the Roads out-Rias Ra \& Bluebird springs Rd.
A. 2 Uegitation Grotuth Changes water Directions

A-2 wastes main ROAd out for ABout $1 / 4$ or A Mile. Always Floods out The 2 Homes Basements and washes Road out. Shamis Rod.

A-4 Township iskidges

0		FORM D - PROPOSED FLOOD CONTROL PROJECT							SHEET \quad OF				
WATERSHED		FORM CO Name: Telephone: Date:	LETE		TYPICAL TYPES OF FLOOD CONTROL PROJECTS								
Name:					Channel Excavation / Widening Channel Realignment Rock Riprap				Levee Gabions Pipe Channel			Dams Floodwall Concrete Lining	
Municipality													
County:													
For County Use:													
Map ID No.	Type of Flood Control Project	Study Phase Begun			Year Constr. Planned	Projected Compltn. Date	$\begin{gathered} \text { Expected } \\ \text { Life } \\ \text { Yrs. } \\ \hline \end{gathered}$	Design Flood		Map ID No. Form A*	Owner Name, Address, and Phone		
		YES		NO				Frequency	Discharge				
		Prelim.	Final					Yrs.	C.F.S.				
D-													
D.													
D-													
D-													
D-													
D-													
D-													

* Enter the storm water problem area's Map ID No., if the proposed project will solve or reduce any/all of an identified drainage problem.

SAMPLE DIAGRAM FOR SYSTEM TWO

Outline known areas where construction exist but construction data is unavailable.
\qquad OF \qquad

WATERSHED Name: Municipality: County: \qquad			FORM CO Name: Telephone: Date:	LETED		INSTRUCTIONS On the map for proposed storm water collection systems, diagrans each proposed system. Indicate a map poinl to show changes in system elements, pipe size, pipe direction and connections to existing systems. For proposed additions to existing systems. diagram only the additions and their connection point into the existing system. Complete a separate form fot each broposed. new system and one for each existing system having one or more proposed anditions. Identify the points within a system consecutively (ex. $\mathrm{H}-1, \mathrm{H}-2, \mathrm{H}-3$). Start the first point in each additionai system 20 numbers higher \{if $\mathrm{H}-3$ ends one system, begin the next with $\mathrm{H}-23$ \}. Be sure to show the point where proposed additions connect into existing systerns, using the map point number from the existing system form and map. See Sample Diagrams and Form on Reverse.																
Map I.D. No.																						
		System's Elements (x)			$\begin{gathered} \hline \text { Pipe } \\ \hline D \\ \hline \end{gathered}$	Measurements *			Material	Map I.D. Nos.** Form A	Proposed Const. Dates		Design Data Avail.	$\begin{gathered} \text { Contact Person } \\ \text { Name and } \\ \text { Phone } \\ \hline \end{gathered}$	Name of FinalOwnership andMaintenance Responsibility							
			anne	vale																		
From	To				Pipe	Open Channel	Swale	TW			B	Depth				Start	End					
H	H																					
H	H-																					
H	H-																					
H	H-																					
H	H																					
H	H																					
H	H-																					
H	H-																					
H	H-																					
H	H-																					
H	H-																					
H	H																					
H	H-																					
H-	H-																					
H-	H		;																			

[^14]
sample diagrams

ADOITION TO EXISTING SVSYEM

SAMPLE FORM (New System Onty)

\square					sen- -
\pm					cism
	\%ememe	"		ㄹ.	
	-	\%			

Mr. Robb Piper
Cambria County Conservation District
401 Candlelight Drive, Suite 221
Ebensburg, PA 15931

Transmittal
Stonycreek River Stormwater Plan City of Johnstown, Cambria County

Dear Mr. Piper:
In accordance with your request for information, enclosed is the stommater forms packet from the City of Johnstown, Cambria County.

Sincerely yours,
Paul C. Rizzo Associates, Inc.

Mark W. Lazzari

Watershed/Land Use Planner
MWL/RJF/ljr
Enclosure
pc: City Manager, Jeffry Silka
Director of Public Works, Darby Sprincz OF 1

WATERSHED

$\begin{array}{l}\text { Name: } \\ \text { Municipality: } \\ \text { County: }\end{array}$
MAP NO. *

Accelerated Erosion
Sedimentation
Landslide
Groundwater
Water Pollution
Other (Explain)
Explanation Line No. (On Back)
Cause (s)
Storm Water Volume
Storm Water Velocity
Storm Water Direction
Water Obstruction
Other (Explain)
Explanation Line No. (On Back)

Frequency
Year Most Recent Occurred
Year Firs Kew

Year First Known Occurred
Regularity
More Than 1 Year
Less Than 1 Year
Only During Agnes
Duration (If Applicable)
Less Than 1 Day
1 Day + (Enter Days)
Property Damage
Loss of Life/Vital Services
Private
More Than One Owner
Types of Properties
Number of Properties
Public (List Types)
Explanation Line No. (On Back)

Solutions

Suggested
Explanation Line No. (On Back)
Formally Proposed
Explanation Line No. (On Back)

* Include Map ID No. if found on any other form listing proposed facilities.

0		FORM D - PROPOSED FLOOD CONTROL PROJECT								SHEET ___ OF		
WATERSHED Name: Stonycreek Municipality: City of Johnstam County: Combria		FORM COMPLETED BY			TYPICAL TYPES OF Channel Excavation / Widening Channel Realignment Rock Riprap				FLOOD CONTROL PROJE Levee Gabions Pipe Channel			Dams Floodwall Concrete Lining
For County Use:					YearConstr.Planned	Projected Compltn. Date	$\begin{array}{\|c} \hline \text { Expected } \\ \text { Life } \\ \text { Yrs. } \\ \hline \end{array}$			Map ID No. Form A^{*}		Name, Address, and Phone
Map ID No.	Type of Flood Control Project	$\frac{\text { Stu }}{\text { YES }}$	y Phase	NO				Frequency Yrs.	$\begin{gathered} \text { Discharge } \\ \text { C.F.S. } \end{gathered}$			
D-												
D-												
D-												
D-												
D-												
D-												
D-												

\qquad OF \qquad

\qquad OF \qquad

WATERSHED Name: \qquad Stonycrale Municipality: Giy of Jochetora County: \qquad			FORM COMPLETED BY			INSTRUCTIONS On the map for proposed storm water collection systems, diagram each proposed system. Indicate a map point to show changes in system elements, pipe size, pipe direction and connections to existing systems. For proposed addilions to existing systems. diagram only the addilions and their connection point into the existing system. Complete a separate form for each proposed, new system and one for each existing system having one or more proposed additions. Identify the points wilhin a system consecutively (ex. H-1, H-2, H-3). Starl the first point in each additional system 20 numbers higher (if $\mathrm{H}-3$ ends one system, begin the next with $\mathrm{H}-23$). Be sure to show the point where proposed additions connect inlo existing systems, using the map point number from the existing system form and map. See Sample Diagrams and Form on Reverse.																	
$\begin{gathered} \text { Map I.D. } \\ \text { No. } \\ \hline \end{gathered}$		System's Elements (x)			Pipe	Measurements *			Material	$\begin{gathered} \text { Map I.D. } \\ \text { Nos. }{ }^{* *} \\ \text { Form A } \\ \hline \end{gathered}$	Proposed Const. Dates		Design Data Avail.	$\begin{gathered} \text { Contact Person } \\ \text { Name and } \\ \text { Phone } \\ \hline \end{gathered}$	Name of FinalOwnership andMaintenance Responsibility								
		Open Channel/ Swale																					
From	To				Pipe	Open Channe!	Swale	D			TW	B				Depth	Start	End					
H	$\mathrm{H}-$																						
H-	H-																						
H-	H-																						
H-	H-																						
H	H-																						
H	H-																						
H	H																						
H-	H																						
H	H																						
H	H-																						
H-	H-																						
H	H-																						
H	H-																						
H	H-																						
H -	H-		:																				

City of Johnstown, Existing Flood Control and Storm Water Control Facilities

WWW. Johnstownflood Protection.Com

October 26, 2005
Borton Lawson Engineering 6814 Chrisphalt Drive, Suite 200
Bath, Pennsylvania 18014-8503

Attn: Mr. Paul A. DeBerry, P.E.

```
BORTONL OONLEHIGG VALLEY OFFICE
*m&R,
MmomPD=
MJWN
WSB
NOV - j% 2005 &GREEMENT
NOV - è 2005 j口CONTRACT
    PAR
    ADMINL
PROJECTNO.
```

\qquad

STONYCREEK ACT 167 PLAN REQUESTED INFORMATION FOR JENNERSTOWN BOROUGH, SOMERSET COUNTY

Dear Mr. DeBerry:
On behalf of our client, Jennerstown Borough, we are submitting information requested at the June 22, 2005 Stonycreek Act 167 Plan meeting.

If you have any questions please call.

The EADS Group, Inc. (Somerset)

by: Ben Faas
enclosures
cc: Jennerstown Borough
Cambria County Conservation District
File No. $4400-\mathrm{G}-01$, w/enc.
C-file
FORM DESCRIPTION SUMMARY

Form	Symbol	Description	Types of Examples	Sources of Information	
A		Stormwater Problem Areas	Flooding, Drainage, Erosion/Sedimentation	Existing studies or reports, Township Documentation, Personal memory, Township engineer	N / A
B	\bigcirc	Obstructions	Bridges. Culverts, Fill, Structures	Owner or structure, township files, subdivision applications, roadmaster, township engineer	N / A
C	Δ	Existing Flood Control Projects	Channel excavation, rip rap, floodwalls, etc.	Township records, township engineer, owner of facilitiy	\%n
D	\Leftrightarrow	Proposed Flood Control Projects	Channel excavation, rip rap. floodwalls, etc.	Township records, township engineer, owner of facilitiy	$N / 4$
E		Existing Stormwater Control Facilities	Detention basins, recharge basins, rooftop stroage	Subdivision files, township engineer, owner of facility	i
F	\rangle	Proposed Stormwater Control Facilities	Detention basins, recharge basins, rooftop stroage	Subdivision files, township engineer, owner of facility	/
G		Existing Stormwater Collection Systems	Storm sewers, manmade channels, diversions	Existing plans, township engineer, owner of system	4
H	0	Proposed Stormwater Collection Systems	Storm sewers, manmade channels, diversions	Existing plans, township engineer, owner of system	$M / 4$
1	\square	Present \& Projected Development in Flood Hazard Areas	Subdivision / site plans	Flood Insurance Studies, Subdivision / Site Plans, General knowledge, Township engineer, Private flood studies	$N A$
J	W	Water Quality Problem Areas	Construction sites, agriculture	Municipalities, Conservation District	14

FORM G - EXISTING STORM WATER COLLECTION SYSTEMS																		
WATERSHED Name: \qquad Municipality: JiENNEESTowN County: \qquad Someteser			FORM COMPLETED BY Name: Telephone: THE EADS GROUF $(814) 445-6551$ \qquad			INSTRUCTIONS Diagram each system on the appropriate map. Establish map points to show changes in system elements, pipe size, or pipe direction. (If unknown, outline the system extent.) Complete this form only where specific information on construction is available. Use a separate form for each system. Identify the points within a system consecutively (ex. G-1,G-2,G-3). Start the first point in each additional system 20 numbers higher. For example, G-3 ends one system, so G-23 begins the next. See Sample Diagrams \& Form on Reverse.												
$\begin{gathered} \text { Map I.D. } \\ \text { No. } \\ \hline \end{gathered}$		System's Elements (x)			Measurements*				Material	Year Constr.	Design Data Available	Contact Person Name and Phone	Name of Final.Ownership andMaintenance Responsibility					
		$\begin{gathered} \hline \text { Pipe } \\ \hline D \end{gathered}$	Channel/ Swale															
From	To		Pipe	Open Channe!	Swale	TW	B	Depth										
G- 1	$\begin{gathered} \text { DAy } \\ \text { G-light } \end{gathered}$				$15^{\prime \prime} C_{1} P_{1} P_{1}$				CPP									
G- 2	DAY G-light				$4^{\prime \prime} \mathrm{PV} \mathrm{C}$				PVC									
G-3	$\text { DAY/ } \mathrm{G} \text { Iight }$				$12^{\prime \prime}$ C.MP.				$C M P$									
G-4	G- 5				$12^{\prime \prime} P_{1} V_{1} C$				$P \vee C$									
G- 5	G- 6				$12^{\prime \prime} \cos c$				CONC									
G-6	G-7				$16^{\prime \prime}$ C.P.P.				CPP									
G- 7	G- 8				$16^{\prime \prime} C_{1} P$ P				CPP									
G- 8	G- 9				$16^{\prime \prime}$ PIVC.				$P V C^{\prime}$									
G- 10	G- //				$18^{\prime \prime} \mathrm{CONC}$.				Conc									
G- //	G- 12				18" Conte.				CONC									
G- / 2	$\begin{aligned} & \text { DAY } \\ & \text { G-light } \end{aligned}$				$18^{\prime \prime}$ Conc.				Conc									
G-13	G- 14				$12^{\prime \prime} \mathrm{C}, \mathrm{M}, \mathrm{P}$				CMP									
G- 14	G-15				$12^{\prime \prime} \mathrm{CmP}$				$C M P$									
G- 15	G- 16				$18^{\prime \prime} \mathrm{CPP.P}$				$\angle P$:						
G- 16	G. 17		\%		$18^{\prime \prime} \mathrm{CONC}$				CONC.									

[^15]

A-1 Acosta 1 - House in flood Plain
Watter, Dotanges ist floon No Busement.
Desalying Qua. Crack
Az. Jewnia -Fsulton arat.
stom, watir flods some bastmant and
ynads. Eirosiow and flooding Rodel waly.
more stok doains weeled by tup form wottr on stat read 6 ol vata fiartfow mitrachernges with stater 130 .
A-3 Community ANK HREA Fendton
Floodsball Fields at twp Lansed comannity pank

some ham why biaching

```
NOT NPDig+隹Q
```



```
NOt ARHACHb/s
```



```
Not applicinsle
```

\qquad OF \qquad -

FORM G - EXISTING STORM WATER COLLECTION SYSTEMS																		
WATERSHED			FORM COMPLETED BY			INSTRUCTIONS Diagram each system on the appropriate map. Establish map points to show changes in system elements, pipe size, or pipe direction. (If unknown, outline the system extent.) Complete this form only where specific information on construction is available. Use a separate form for each system. Identify the points within a system consecutively (ex. G-1,G-2,G-3). Start the first point in each additional system 20 numbers higher. For example, G-3 ends one system, so G-23 begins the next. See Sample Diagrams \& Form on Reverse.												
Name:			Name: Telephone: Date:															
County:																		
Map I.D. No.		System's Elements (x)			Measurements *				Material	Year Constr.	Design Data Available	Contact Person Name and Phone	Name of FinalOwnership andMaintenance Responsibility					
			Channel / Swale															
From	To		Pipe	Open Channel	Swale	TW	B	Depth										
G-	G-																	
G-	G-																	
G-	G-																	
G-	G-																	
G-	G-																	
G-	G-																	
G-	G-																	
G-	G-																	
G-	G-																	
G-	G-																	
G-	G-																	
G-	G-																	
G-	G-																	
G-	G-											*						
G-	G-		;															

\qquad OF \qquad

WATERSHED Name: Municipality: County: \qquad			FORM CON Name: Telephone: Date:	LETED		INSTRUCTIONS On the map for proposed storm water collection systems, diagram each proposed systerr. Indicate a map point to show changes in system elements, pipe size, pipe direction and connections															
						 poinl number from the existing system form and map. See Sample Diagrams and Form on Reverse.															
$\begin{gathered} \text { Map I.D. } \\ \text { No. } \\ \hline \end{gathered}$		System's Elements (x)			$\begin{gathered} \hline \text { Pipe } \\ \hline \text { D } \\ \hline \end{gathered}$	Measurements *			Material	$\begin{gathered} \text { Map I.D. } \\ \text { Nos.** } \\ \text { Form A } \\ \hline \end{gathered}$	ProposedConst. Dates		$\begin{gathered} \text { Design } \\ \text { Data } \\ \text { Avail. } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Contact Person } \\ \text { Name and } \\ \text { Phone } \\ \hline \end{gathered}$	Name of Final Ownership and Maintenance Responsibility						
		Open Channel/ Swale																			
From	To				Pipe	Open Channel	Swale	TW			B	Depth				Start	End				
H-	H-																				
H-	H-																				
H	H-																				
H	H																				
H	H-																				
H	H-																				
H -	H-																				
H	H-																				
$\mathrm{H}-$	H																				
H.	H																				
H	H-																				
H-	H-																				
H-	H-																				
H	H-																				
H	H-		;																		

\qquad OF \qquad
WATERSHED
FORM COMPLETED BY
Name: \qquad Name:
Municipality: County: Telephone: \qquad
SITE Types of Water Quality Problems High Community Tolerence High Temperature High Turbidity Hydrocarbon Pollution Low Community Diversity Low Dissolved Oxygen Low pH Nutrient Enrichment Poor Habitat
Other/Explanation Line No.
Potential Cause(s)

Agriculture
Construction Site
Erosion
Lake Discharge
STP Outfall
Other/Explanation Line No.
Frequency
Year Most Recent Occurence
Year First Known Occurence
Source of Information
BWA Streamwatch
County Water Quality Study
Driveby
UCCD Complaint Investigation
Other/Explanation Line No.

J	$\mathrm{J}-$	J	$\mathrm{J}-$	$\mathrm{J}-$	J	J	J	J	J	J
J										

EXPLANATION LINES

1
2
3
4
5
6
7
8
9
10

EXPLAINATIONLINE(S)

Begin with A. 1 as the first map number to identify the first' storm water problem area. Bustrate the defined problem on the watershed map provided, and identify it with its map number.

For each storm water problem area within your municipality, enter the map identification number at the head of the column. Describe the problem by placing a check (4 in the appropriate blocks of the column under this map identification number.

When an additional explanation is required, write the line number(s) used in the column marked "Explanation Line No. (s)". Example 1, 2-3, etc.

Enter the line no. (s) used to list the map ID no. (s) for the proposed facilities.

Definitions

Storm Water Problem Area

An area that defines the farthest extent of a storm water problem, including any area that experiences property damage, inundation, accelerated erosion, surface water pollution, groundwater poltution, landslides, or any other problem as a resulk of storm water runoff.

Groundwater

Water in the ground below the water table: -

Accelerated Erosion

The removal of the surface of the fand through the combined action of man's activities and the natura processes at a rate greater than would occur because of the natural process alone.

Sedimentation

The process by which soil or other surface materials, transported by surface water, is deposited on stream bottoms.

Water Obstruction

Any dike, bridge, culvert, wall, wingwall, fill, pier wharf, embankment, abutment, or other structure located in, along, across, or projecting into any watercourse, floodway, or body of water.

EXPLANATION LINES (continued)

Begin with A. 1 as the first map number to identify the first' storm water problem area. Illustrate the defined problem on the watershed map provided, and identify it with its map number.

For each storm water problem area within your municipality, enter the map identification number at the head of the column. Describe the problem by placing a check (4 in the appropriate blocks of the column under this map identification
number.

When an additional explanation is required, write the line number(s) used in the column marked "Explanation Line No. (s)".Example 1, 2-3, etc.

If storm water problem occurred during and
after Agnes, describe the
frequency of the problem after Agnes.

Use the explanation fines to list the types of public property damages ,e.g.roadways, hospitals, etc.

Enter the line no. (s)

Definitions

Storm Water Problem Area

An area that defines the farthest extent of a storm water problem, including any area that experiences property damage, inundation, accelerated erosion, surface water pollution, groundwater pollution, landslides, or any other problem as a resuit of stom; water runoff.

Groundwater

Water in the ground below the water table: .-

Acceterated Erosion

The removal of the surface of the land through the comblned action of man's activities and the natural processes at a rate greater than would occur because of the natural process alone.

Sedimentation

The process by which soll or other surface materials, transported by surface water, is deposited on stream bottoms.

Water Obstruction

Any dike, bridge, culvert, wall, wingwall, fili, pier no. (s) for the proposed facilities. wharf, embankment, abutment, or other structure located in, along, across, or projecting into any watercourse, floodway, or body of water.

EXPLANATION LINES (continued)

A1	
A2	working on a solution to redirect the area of sedimentation for
	removal and cleanout every 5 years.

FORM DESCRIPTION SUMMARY
ACT 167 WATERSHED STORMWATER MANAGEMENT PLAN

Form	Symbol	Description	Types of Examples	Sources of Information	
A		Stormwater Problem Areas	Flooding, Drainage, Erosion/Sedimentation	Existing studies or reports, Township Documentation, Personal memory, Township engineer	
B	\bigcirc	Obstructions	Bridges. Culverts, Fill, Structures	Owner or structure, township files, subdivision applications, roadmaster, township engineer	
C	Δ	Existing Flood Control Projects	Channel excavation, rip rap, floodwalls, etc.	Township records, township engineer, owner of facilitiy	
D	0	Proposed Flood Control Projects	Channel excavation, rip rap, floodwalls, etc.	Township records, township engineer, owner of facilitiy	
E		Existing Stormwater Control Facilities	Detention basins, recharge basins, rooftop stroage	Subdivision files, township engineer, owner of facility	
F		Proposed Stormwater Control Facilities	Detention basins, recharge basins, rooftop stroage	Subdivision files, township engineer, owner of facility	
G		Existing Stormwater Collection Systems	Storm sewers, manmade channels, diversions	Existing plans, township engineer, owner of system	
H	(2)	Proposed Stormwater Collection Systems	Storm sewers, manmade channels, diversions	Existing plans, township engineer, owner of system	
1		Present \& Projected Development in Flood Hazard Areas	Subdivision / site plans	Fiood Insurance Studies, Subdivision / Site Plans, General knowledge, Township engineer, Private flood studies	
J	\sum_{5}	Water Quality Problem Areas	Construction sites, agriculture	Municipalities, Conservation District	

FORM E-EXISTING STORM WATER CONTROL FACILITIES					SHEET 1 OF 1			
WATERSHE		FORM COMPLETED BY		Definition of Storm Water Control Facility A natural / man-made device or structure specifically designed and / or utilized to reduce the rate and / or volume of storm water runoff from a site or sites.				
Name:	Stonycreek River	Name: Telephone: Date:	$\begin{aligned} & \text { Robert T. Pyle } \\ & \frac{814-754-8387}{\text { Auqust } 9,2005} \end{aligned}$					
Municipality:	Indian Lake Borough							
County:	Somerset							
For County Use:								
Map ID No.	Type of Storm Water Control Facility	Year Built	Contact Person					
E- 1	The Dam	1962	Harry Huzsek	1301 Causeway Dr., 814-754-81建1				
E								
E-								
E-								
E.								
E-								
E.								
E-								
E.								
E-								
E								
E-								
TYPICAL TYPES OF STORM WATER CONTROL FACILITIES								
Detention / Retention Basin Roof-Top Storage Natural Pond or Wetiand Serni-Pervious Paving								
Parking Lot Pondling		Infilitration D	(Seepage/Recharge Basin	und Tank)				

WATERSHED		FORM COMPLETED BY			DEFINITION		
Name: Municipality: County:	Stonycreek River	Name: Telephone: Date:	Robert T. Pyle		A natural / man-made device or structure specifically designed and / or utilized to reduce the rate and / or volume of storm water runoff from a site or sites.		
	Indian Lake Borough		August 9, 2005				
	Somerset						
For County Use:							
Map ID No.	Type of Storm Water Control Facility		Proposed Constr. Dates		Map No. Form A^{*}	Contact Person Name, Address and Phone	Comments
			Start	End			
F- 1	Raising Dam by 4 feet		2008		A1	Indian Lake Borough, Harry Huzsek 1301 Causeway Dr. 814-754-8161	The flood plain around the dam will raise
F-							to an elevation of 1196 feet. This will put approximately 100 homes on the flood
F-							plain. The DEP is requiring the dam to be capt with 4 feet of concrete. Will
F-							FEMA notify the home owners and cover the houses with insurance.
F-							
F-							
F-							
F-							
F-							
F-							
F-							
* Enter the s	orm water problem area's Map	No., if the prop TYPICAL TY	oposed pi TPES OF	will sol RM WA	r reduce R CONTR	/ all of an identified drainage problem. L FACILITIES	
Detention / R	tention Basin					Roof-Top Storage	
Natural Pond	or Wetland					Semi-Pervious Paving	
	ondling					Infiltration Device (Seepa	Recharge Basin or Underground Tank)

			FORM G - EXISTING STORM WATER COLLECTION SYSTEMS									SHEET 1 OF	
WATERSHEDName: Stonycreek RiverMunicipality: Indian Lake BoCounty: Somerset			FORM COMPLETED BYName:$\frac{\text { Robert T. Pyle }}{\text { Ielephone: }} \frac{814-754-8387}{\text { Date: }}$Auqust 9,2005			INSTRUCTIONS Diagram each system on the appropriate map. Establish map points to show changes in system elements, pipe size, or pipe direction. (If unknown, outline the system extent.) Complete this form only where specific information on construction is available. Use a separate form for each system. Identify the points within a system consecutively (ex. G-1,G-2,G-3). Start the first point in each additional system 20 numbers higher. For example, G-3 ends one system, so G-23 begins the next. See Sample Diagrams \& Form on Reverse.							
$\begin{gathered} \text { Map I.D. } \\ \text { No. } \end{gathered}$		System's Elements (x)			Measurements *				Material	Year Constr.	Design Data Available	Contact Person Name and Phone	Name of Final.Ownership andMaintenance Responsibility
		Pipe	Open Channel	Swale	D	TW	B	Depth					
G-	G-	N/A											
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-											\%	
G-	G-		;										

SAMPLE DIAGRAM FOR EYSTEM TWO

SAMPLE FORM (System One Onty)																
				$=$			\%or	-	$\underline{\square}$							
					$=$											
						2x	-	O-								
3								-	\cdots	T	-	\pm	I	\therefore		\cdots
\bigcirc							${ }^{*}$				-	\cdots	vor	-mommor		-4icm
C) \square_{0}				\cdots				-	m	-	-mon maxe		- \sim -			
c. 0				\cdots				\cdots	\%	-	man maxer		$\underline{-10}$			
\cdots				\cdots				-		\cdots	\%ounmm		-ame			
\bigcirc				\cdots				${ }^{*}$	"m	${ }^{-}$	-man max		-4,			
\cdots								\square		${ }_{m}$	Hamment					
c. ${ }^{\text {ar }}$				-				\cdots		+						
.		,			\cdots	\cdots	\cdots	-	m	\cdots	monman		$\underline{+1}$			
-			,		\cdots	*	\cdots	-					$\rightarrow \times$			
-																
$\bigcirc \cdot$																

Name: Stonycreek RivelName: $\begin{array}{ll}\text { Municipality: Indian Lake } & \text { Telephone: } \\ \text { County: Somerset } & \text { Date: }\end{array}$

Robert T. Pyle 814-754-8387 August 9, 2005

On the map for proposed storm water collection systems, diagran each proposed system. Indicate a map point to show changes in system elements, pipe size, pipe direciion and cornnections to existing systems. For proposed additions to existing systems. diagram only the additions and their connecion point inte the existing system. Complete a separate form for each proposed.

new system and one tor each existing system having one or more proposed addilions. Identify the points viithin a system conseculively (ex. $\mathrm{H}-1, \mathrm{H}-2, \mathrm{H}-3$). Start the first point in each
additional system 20 numbers higher (if H -3 ends one system, begin the nexi wilh H -23). Be sure to sh

* See measurement key on reverse side. ** Enter the storm water problem areas' Map I.D. Nos., if proposed project will solve or reduce any/ail of the drainage problems.

SAMPLE DIAGRAMS

Measurement
Key a Diameter TW $=$ Top Width $B=$ Bottom Width

ADDITION TO EXISting SYSTEM

SAMPLE FORM (New System Only)

Begin with A. 1 as the first map number to identify the first' storm water problem area. Illustrate the defined problem on the watershed map provided, and identify it with its map number.

For each storm water problem area within your municipality, enter the map identification number at the head of the column. Describe the problem by placing a check (4 in the appropriate blocks of the column under this map identification number.

When an additiona! explanation is required, write the line number(s) used in the column marked "Explanation Line No (s) ${ }^{n}$. Example 1, 2-3, etc.

Definitions

Storm Water Problem Area

An area that defines the farthest extent of a storm water problem, including any area that experiences property damage, inundation, accelerated erosion, surface water pollution, groundwater pollution, andslides, or any other problem as a resuit of storm water runoff.

Groundwater

Water in the ground below the water table. -

Accelerated Erosion

The removal of the surface of the land through the combined action of man's activities and the natural processes at a rate greater than would occur because of the natural process alone.

Sedimentation

The process by which soil or other surface materials, transported by surface water, is deposited on materials, transp
stream bottoms.

Water Obstruction

Any dike, bridge, culvert, wall, wingwall, fill, pier, wharf, embankment, abutment, or other structure located in, along, across, or projecting into any watercourse, floodway, or body of water.

BOROUGH OF FERNDALE

109 STATION STREET
JOHNSTOWN, PA 15905
PHONE: 814-288-1771 FAX: 814-288-5910

Memorandum

To: ROBB PIPER

From: BEVERLY
Subject: DOCUMENTS

Date: JULY 12, 2005
DEAR MR. PIPER
YOU WILL FIND ENCLOSED OUR COMPLETED DOCUMENTS PER YOUR REQUEST.

YOU MAY CALL BRIAN AT 814-288-0472 IF THERE ARE ANY QUESTIONS. NORMAL HOURS ARE 7:00 A.M. -11:30 A.M .- 12:30 P.M. - 3:00 P.M., MONDAY THROUGH FRIDAY.

SINCERELY

BEVERLY E. ROTH
ENCLOSURE

WATERSHED	FORI	FORM COMPLETED BY Name: BRIAN MGATEER Telephone:824-288-0472 Date: $\quad 3-1.05$					Before Filling Out Form, See Instructions On Back					
Name: Municipality: County:	ORO						For County Use:					
MAP NO. *	A- 1	A-2	A-3	A-4	A-5	A-						
Types of Storm Water Problems												
Flooding												
Accelerated Erosion												
Sedimentation												
Landslide												
Groundwater												
Water Pollution												
Other (Explain)												
Explanation Line No. (On Back)												
Cause (s)												
Storm Water Volume												
Storm Water Velocity												
Storm Water Direction												
Water Obstruction												
Other (Explain)												
Explanation Line No. (On Back)	1											
Frequency												
Year Most Recent Occurred	2005											
Year First Known Occurred	?											
Reqularity												
More Than 1 Year												
Less Than 1 Year												
Only During Agnes												
Duration (If Applicable)												
Less Than 1 Day												
1 Day + (Enter Days)		\checkmark										
Property Damage												
Loss of Life/Vital Services												
Private												
More Than One Owner												
Types of Properties												
Number of Properties												
Public (List Types)			\checkmark									
Explanation Line No. (On Back)												
Solutions												
Suggested				v								
Explanation Line No. (On Back)												
Formally Proposed												
					\checkmark							
*xplanation Line No. (On Back)		fo	m list		osed	相						

A-1. "Basin" draining over hillside
A-2 WHENEVER IT RAINS
al Road closed periodically
A-4 PIPE IT OVER THE HILL TO AN EXISTING BASIN
A. 5 STATE MET with US 6-24-0.5 CONCERNINS ThIS PRObLEM - NO SOLUTTON AS VET.

Begin with A. 1 as the first map number to identify the first' storm water problem area. Illustrate the defined problem on the watershed map provided, and identify it with its map number.

For each storm water problem area within your municipality, enter the map identification number at the head of the column. Describe the problem by placing a check (4 in the appropriate blocks of the column under this map identification number.

When an additional explanation is required, write the line number(s) used in the column marked "Explanation Line No. (s)".Example 1, 2-3, etc.

Definitions

Storm Water Problem Area

An area that defines the farthest extent of a stom water problem, including any area that experiences property damage, inundation, accelerated erosion, surface water pollution, groundwater pollution landsfides, or any other problem as a resulk of storm water runoff.

Groundwater

Water in the ground below the water table. .

Accelerated Erosion

The removal of the surface of the tand through the combined action of man's activities and the natura processes at a rate greater than would occur because of the natural process alone.

Sedimentation

The process by which soil or other surface materials, transported by surface water, is deposited on stream bottoms.

Water Obstruction

Any dike, bridge, culvert, wall, wingwall, fill, pier, wharf, embankment, abutment, or other structure located in, along, across, or projecting into any watercourse, flaodway, or body of water

RATE:
\qquad

[^16]

* Enter the storm water problem area's Map ID No., if the proposed project will solve or reduce any / all of an identified drainage problem.

ل FORM E-EXISTING STORM WATER CONTROL FACILITIES					SHEET 1 OF 1
WATERSHED Name: Municipality: County: CAHBRIA \qquad FERNOAALE MORO		FORM COMPLETED BYName:Telephone: $\frac{B R 1 A N M \frac{14 T E E R}{814-288-0422}}{1-1-05}$Date:		Definition of Storm Water Control Facility A natural / man-made device or structure specifically designed and / or utilized to reduce the rate and / or volume of storm water runoff from a site or sites.	
For County Use:					
Map ID No.	Type of Storm Water Control Facility	Year Built	Contact Person	Address and Phone	Comments
E- 1	BASIN TO BASIN	2004	BRIAN M C CTEER	109 STATION ST.	CLOSEX SYSTEM
E- 2	BASIN TO GABION	2004	BRIAN M M ATEER	TohNSTowN, $A_{A} 15905$	APE TG dISBURSEMENT
E-					
TYPICAL TYPES OF STORM WATER CONTROL FACILITIES					
Detention / R	etention Basin	Roof-Top Stor			
Natural Pond	or Wetland	Semi-Pervious	Paving		
Parking Lot P	ndling	Infiltration Dev	ce (Seepage /Recharge Basin or Undergr	und Tank)	

August 12, 2005
Project No. 00-2266.31
Mr. Nob PiperCambria County Conservation District
401 Candlelight Drive, Suite 221
Ebensburg, PA 15931
Transmittal
Transmittal
Stonycreek River Stormwater Plan
Stonycreek River Stormwater Plan Dale Borough, Cambria County Dale Borough, Cambria County
Dear Mr. Piper:

In accordance with your request for information, enclosed is the stormwater forms packet from Dale Borough, Cambria County.

Sincerely yours,

Paul C. Rizzo Associates, Inc.

MWL/RJF/ljr
Enclosure
pc: Dale Borough Supervisors

WATERSHED		FORM COMPLETED BYName:MarkW. Lazzari Telephone: $814-536-6767$					Before Filling Out Form, See Instructions On Back					
Name: Municipality: County: Solomon Run Dale Boro Dambria	Soloman RunDale BoroCambria											
							For County Use:					
MAP NO. *	A-											
Types of Storm Water Problems												
Flooding												
Accelerated Erosion												
Sedimentation												
Landslide												
Groundwater					1							
Water Pollution					,							
Other (Explain)												
Explanation Line No. (On Back)												
Cause (s)												
Storm Water Volume				-								
Storm Water Velocity				F								
Storm Water Direction												
Water Obstruction												
Other (Explain)												
Explanation Line No. (On Back)												
Frequency												
Year Most Recent Occurred												
Year First Known Occurred												
Reqularity												
More Than 1 Year												
Less Than 1 Year												
Only During Agnes												
Duration (If Applicable)												
Less Than 1 Day												
1 Day + (Enter Days)												
Property Damage												
Loss of Life/Nital Services												
Private												
More Than One Owner												
Types of Properties												
Number of Properties												
Public (List Types)												
Explanation Line No. (On Back)												
Solutions												
Suggested												
Explanation Line No. (On Back)												
Formally Proposed												
Explanation Line No. (On Back)												
* Include Map ID No. if found		form			ed	,						

[^17]

\square 1 OF 1

WATERSHED Name: Solomon Run Municipality: Dale Boro County: \qquad			FORM COMPLETED BY Name: Telephone: \qquad $\frac{\text { MarkW.Lazzar }}{814-536-6767}$ Date:		INSTRUCTIONS Diagram each system on the appropriate map. Establish map points to show changes in system elements, pipe size, or pipe direction. (If unknown, outline the system extent.) Complete this form only where specific information on construction is available. Use a separate form for each system. Identify the points within a system consecutively (ex. G-1,G-2,G-3). Start the first point in each additional system 20 numbers higher. For example, G-3 ends one system, so G-23 begins the next. See Sample Diagrams \& Form on Reverse.												
Map I.D. No.		System's Elements (x)			Measurements *			Material	Year Constr	Design Data Available	Contact Person Name and Phone	Name of Final Ownership and Maintenance Responsibility					
		Channel/ Swale															
From	To				Pipe	Open Channel	Swale						TW	B	Depth		
G-	G-																
G-	G-																
G-	G-																
G-	G-					1	1										
G-	G-																
G-	G-																
G-	G-																
G-	G-																
G-	G-																
G-	G-																
G-	G-																
G-	G-																
G-	G-																
G-	G-																
G-	G-		;														

WATERSHED Name: - Solomon Run Municipality: Dale Boro County: \qquad Cambria			FORM COMPLETED BY Name: MarkW.Lazzari Telephone: $814-536-6767$ Date:			INSTRUCTIONS On the map for proposed storm water collection systems, diagram each proposed systern. Indicate a map point to show changes in system etements, pipe size, pipe direction and connections to existing systems. For proposed additions to existing systems, diagram only the additions and their connection point into the existing system. Complete a separate form tor each proposed. now system and one for each existing system having one or more proposed additions. fdentify the points within a system consecutively \{ex. H-1, H-2, H-3). Start the first point in each additional system 20 numbers higher (if $\mathrm{H}-3$ ends one syslem, begin the next with $\mathrm{H}-23$). Be sure to show the point where proposed additions connect into existing systems, using the map point number from the existing system form and map. See Sample Diagrams and Form on Reverse.																
$\begin{gathered} \text { Map I.D. } \\ \text { No. } \\ \hline \end{gathered}$		System's Elements (x)			Measurements*				Material	$\begin{gathered} \text { Map I.D. } \\ \text { Nos. }{ }^{* \star} \\ \text { Form A } \end{gathered}$	Proposed Const. Dates		Design Data Avail.	Contact Person Name and Phone	Name of Final Ownership and Maintenance Responsibility							
			Open Channel / Swale																			
From	To		Pipe	Open Channel	Swale	TW	B	Depth			Start	End										
H-	H-																					
H-	H-																					
H-	H-																					
H-	H-							1														
H-	H-																					
H-	H-																					
H-	H-																					
H-	H-																					
H-	H-																					
H-	H-																					
H-	H-																					
H	H-																					
H	H																					
H-	H																					
H	H-		;																			

Memorandum

To: WPAC Committee Member

From: Kob Piper, Cambria County Conservation District
Date: May 28, 2003
Subject: Stonycreek River Stormwater Problem Areas

Dear WPAC Committee Member;
As part of the Phase I, Scope of Study, for the Stonycreek River Watershed ACT 167 Stormwater Management Plan, each municipality is asked to supply information related to stormwater problems within their municipality for the study watersheds. This information will be utilized in the Scope of Study to assist in describing stormwater problems within the watershed. Attached you will find Form A, Stormwater Problem Areas, a map of the portion of your municipality which lies within the study watershed area, and instruction on how to fill out this form. Please use this material to locate and describe the problem areas within your municipality which relate to these watersheds and return these forms to the Cambria County Conservation District, 401 Candlelight Drive, Suite 221, Ebensburg, PA 15931 NO LATER THAN JUNE 18, 2003. Should you have any questions on how to fill out this form, please feel free to contact Terry Ostrowski of Borton-Lawson Engineering at (570)821-1994, ext. 241. Your assistance is greatly appreciated.

Sincerely;
Kob Piper, Director
Cambria County Conservation District

HOW TO FILL OUT FORM

GENERAL

The form in this packet is intended to document existing stormwater related issues within the municipality. A map has been provided along with the data collection form that is to be used to locate the features described in the forms. Each feature on the map should be identified with a symbol (shown in upper left corner of form) and an identification number (i.e. A-1, A-2, etc) which matches the number of the area being described on the form.

FORM A, STORMWATER PROBLEM AREAS

- The intent of this form is to identify any problem areas (areas that flood frequently such as stream banks, roads, any landslides or turbidy problems), for that part of you municipality that is in the Stonycreek River Watershed. For some of you that may just be several streets, for others that may be the entire municipality.
- For the (Map No., A-, A-) line you will identify your problem sites by numbering them, starting with \#1, so if you have 3 problem sites you should put 1, 2 and 3 like this: A-1, A-2, A-3.
- Once you number the problem area, check $(\sqrt{ })$ the information in that column that applies to the problem area so that:

Map No.	A-1	A-	A-
Types of Stormwater Problems			
	\sqrt{n}		
Flooding	\sqrt{n}		
Accelerated Erosion			
Sedimentation	$\sqrt{2}$		etc.

The above example indicates that problem area A-1 has flooding and landslide problems.

- Locate the problem areas on the attached map by putting a dot with A-1 next to it. Continue for all sites you identified. If there are no problem areas in your municipality put not applicable and go to the next form.

Begin with A. 1 as the first map number to identify the first' storm water problem area. Hustrate the defined problem on the watershed map provided, and identify it with its map number.

For each storm water problem area within your municipality, enter the map identification number af the head of the column. Describe the problem by placing a check (4 in the appropriate blocks of the column under this map identification number.

When an additional explanation is required, write the line number(s) used in the column marked "Explanation Line No. (s)'.Example 1, 2-3, etc.

If storm water problem occurred during and after Agnes, describe the frequency of the problem after Agnes.

Use the explanation lines to list the types of public property damages ,e.g.roatways, hospitals, etc.

Enter the fine no. (s) used to list the map 10 no. (s) for the proposed facilities.

Definitions

Storm Water Problem Area
An area that defines the farthest extent of a storm water problem, including any area that experiences property damage, inundation, accelerated erosion, surface water polution, groundwater pollution, landstides, or any other problem as a result of storm water runoff.

Groundwater

Water in the ground below the water table. - -

Accelerated Erosion

The removal of the surface of the land through the combined action of man's activities and the natural processes at a rate greater than would occur because of the natural process alone.

Sedimentation

The process by which soil or other surface materials, transported by surface water, is deposited on stream bottoms.

Water Obstruction

Any dike, bridge, culvert, wall, wingwall, fill, pier, wharf, embankment, abutment, or other structure located in, along, across, or projecting into any watercourse, floodway, or body of water.

August 18, 2005

Cambria County Conservation District
401 Candlelight Drive, Suite 221
Ebensburg, PA 15931
ATTN: Kob Piper
STONYCREEK ACT 167 PLAN
STORMWATER MANAGEMENT
Dear Rib,
On behalf of the Conemaugh Township Supervisors of Cambria County, we have completed the forms for the Stormwater Management Plan received at the Phase II Meeting on June 22, 2005. The completed forms are enclosed with this memo as well as a map of the portion of Conemaugh Township contributing to the Stonycreek Watershed.

If you have any questions or concerns, please contact us at (814) 445-6551.

THE EADS GROUP, INC. (Somerset)

By: Jeffrey S. Haynal, E.I.T.
cc: File \# 2001-G-01
Central File
John Peschock, Steve Sewalk

[^18] (814) 944-5035

Begin with A. 1 as the first map number to identify the first' storm water problem area. Hlustrate the defined problem on the watershed map provided, and identify it with its map number.

For each storm water problem area within your municipality, enter the map identification number at the head of the column. Describe the problem by placing a check (4 in the appropriate blocks of the column under this map identification number.

When an additional explanation is required, write the line number(s) used in the column marked "Explanation Line No. (s)". Example 1, 2-3, etc.

Enter the line no. (s) used to list the map iD no. (s) for the proposed facilities.

Definitions

Storm Water Problem Area

An area that defines the farthest extent of a storm water problem, including any area that experiences property damage, inundation, accelerated erosion, surface water poliution, groundwater pollution, landslides, or any other problem as a result of stom water runoff.

Groundwater

Water in the ground below the water table. .-

Accelerated Erosion

The removal of the surface of the tand through the combined action of man's activities and the natura processes at a rate greater than would occur because of the natural process alone.

Sedimentation

The process by which soil or other surface materials, transported by surface water, is deposited on stream bottoms.

Water Obstruction

Any dike, bridge, culvert, wall, wingwall, fith, pier, wharf, embankment, abutment, or other structure located in, along, across, or projecting into any watercourse, floodway, or body of water.

[^19]

2	FORM J - WATER QUALITY PROBLEM AREAS							SHEET 10 OF							
WATERSHED				FORM COMPLETED BY											
Name: STONYCR	Stanycreek			Name: Telephone: Date:		Sear /hyMal									
Municipality: CONEMAMSAL	CONEMAUGH TWP.					814-44'5-6551									
County: CAMBRIA	CAmBRIA					$8 / 17 / 05$									
SITE	J-	J.	J.	J-	J-	J.									
Types of Water Quality Problems															
High Community Tolerence															
High Temperature															
High Turbidity															
Hydrocarbon Pollution															
Low Community Diversity															
Low Dissolved Oxygen															
Low pH															
Nutrient Enrichment															
Poor Habitat															
Other/Explanation Line No.															
Potential Causels)															
Agriculture															
Construction Site															
Erosion															
Lake Discharge															
STP Outfall															
Other/EXplanation Line No.															
Frequency															
Year Most Recent Occurence															
Year First Known Occurence															
Source of Information															
BWA Streamwatch															
County Water Quality Study															
Driveby															
UCCD Complaint Investigation															
Other/Explanation Line No.															
	EXPLANATIONLINES														
1 NOT APpucab		18	SA	ces	df		Sef		\%						
2		-	ar	Po	\%	\%									
3															
4															
5															
6															
7															
8															
9															
10															

BOROUGH OF BOSWELL

331 Center Street
Boswell, PA 15531

Telephone: 814-629-6121
Fax: 814-629-6121

June 11, 2003

Terence J. Ostrowski, P.E.
613 Baltimore Drive, Suite 300
Wilkes-Barre, PA 18702-7903

RE: Storm Water Problems

Dear Mr. Ostrowski,
We received a copy of your form on storm water problems within our municipality from Cambria-Somerset Council of Governments. We are presently doing a study in our borough and it is being done by Sean Isgan, CME Engineering, 165 East Union St., Somerset, PA 15501, telephone 814-443-3344. You can contact him for the information you need for our borough.

If you have any questions, please call the above number. I am in the office, Wednesdays, 9:00 to 10:00 AM each week.

Thank you for your consideration of this matter.

Sincerely,
BOROUGH OF BOSWELL

Connie Knopsnyder
Borough Secretary

Begin with A. 1 as the first map number to identify the first' storm water problem area. Illustrate the defined problem on the watershed map provided, and identify it with its map number.

For each storm water problem area within your municipality, enter the map identification number at the head of the column. Describe the problem by placing a check (4 in the appropriate blocks of the column under this map identification number.

When an additional explanation is required, write the line number(s) used in the column marked "Explanation Line No. (s)". Example 1, 2-3, etc.

Enter the line no. (s) used to list the map ID
no. (s) for the proposed facilities.

Definitions

Storm Water Problem Area

An area that defines the farthest extent of a storm water problem, including any area that experiences property damage, inundation, accelerated erosion, surface water pollution, groundwater pollution, landslides, or any other problem as a result of storm water runoff.

Groundwater

Water in the ground below the water table.

Accelerated Erosion

The removal of the surface of the land through the combined action of man's activities and the natural processes at a rate greater than would occur because of the natural process alone.

Sedimentation

The process by which soil or other surface materials, transported by surface water, is deposited on stream bottoms.

Water Obstruction

Any dike, bridge, culvert, wall, wingwall, fill, pier, wharf, embankment, abutment, or other structure located in, along, across, or projecting into any watercourse, floodway, or body of water.

EXPLANATION LINES (continued)

1	$48^{\prime \prime}$ STORMSEWER OUTFALS INTO WETLAND AREA WITH LITTLE GRADE. SEDIMENTATION HAS
	REDUCED CAPACITY OF THE PIPE \& OUTEALL CHANNEL. SIORM WATER PRODULED FROM
	SIGNIFICANT RAINENENTS (EX. TVAN Y FRANCES U 2004) CAN NOT BE PROPERLY
	CONVEYED WITIC RESULTS IN ELOODING.
2.	SEDIMENT OBTRUCTS THE PIPE + QUTFALL AREA. ROAD CINDERS NECESSARY FOR WINTER
	MAINTENANCE ESPECIALLY FOR PENNDOT RDADWAYS WITH IN THE BOROUGH (BROADWAY, MAIN-
	+ DIAMOND STS.) CONTRIBUTE TO SEDIMENTATION AT THE OUTFALL. FLOODING THEN OCCURS
	DURING LARGE STORM EVENTS BECAUSE STORMWATER VOLLIME TOO MULH FOR AVAILAELE CAPAL
3	FLOODING IS RESIDENTIAL BASEMENT FLOODING WITHIN THE LOW LYING STEWART ST
	+ SWALLOW ST AREAS.
4	ADDING A 24" HDPE STORMSEWER TO SOUTH SIDE OF STEUART ST WHICH WILL OUTLET TO
	PROPOSED 36" HDP STORMSEWER TO PARALLEL THE EXITING 48"SS ALONG WILSON DRIVE

Begin with A. 1 as the first map number to identify the first' stom water problem area. Illustrate the defined problem on the watershed map provided, and identify it with its map number.

For each storm water problem area within your municipality, enter the map identification number af the head of the column. Describe the problem by placing a check (4 in the appropriate blocks of the column under this map identification number.
When an additional explanation is required, write the line number(s) used in the column marked "Explanation Line No. (s)'.Example 1, 2-3, etc.

Definitions

Storm Water Problem Area

An area that defines the farthest extent of a storm water problem, including any area that experiences property damage, inundation, accelerated erosion, surface water pollution, groundwater pollution, landstides, or any other problem as a result of stom water runoff.

Groundwater
Water in the ground below the water table. -

Accelerated Erosion

The removal of the surface of the land through the combined action of man's activities and the natural processes at a rate greater than would occur because of the natural process alone.

Sedimentation

The process by which soil or other surface materials, transported by surface water, is deposited on stream bottoms.

Water Obstruction

Any dike, bridge, culvert, wall, wingwall, filt, pier, wharf, embankment, abutment, or other structure located in, along, across, or projecting into any watercourse, floodway, or body of water.

EXPLANATION LINES (continued)

The Borough of Berlin
 700 North Street
 Berlin, Somerset County, Penusylvania 15530

FAX TRANSMITTAL

LUslude Map 10 No if found onany other form listing pronosed facillties.

2)
(3)
$\frac{4}{5}$
$\frac{6}{7}$
$\frac{7}{8}$

* Enter the storm water problem area's Map ID No., if the proposed project will solve or reduce any / all of an identified drainage problem.

FORM E-EXISTING STORM WATER CONTROL FACILITIES					SHEET _ 1 OF 1
WATERSHED		FORM COMPLETED BY		Definition of Storm Water Control Facility A natural / man-made device or structure specifically designed and / or utilized to reduce the rate and / or volume of storm water runoff from a site or sites.	
Name:Municipality:County:		Name: Telephone: Date:	$\begin{aligned} & \text { JEANNE M. JOHNSON } \\ & \frac{(814) 267-4929}{07-25-05} \end{aligned}$		
For County Use:					
Map ID No.	Type of Storm Water Control Facility	Year Built	Contact Person	Address and Phone	Comments
E- 1	DETENTION/RETENSION BASIN	1999	Berlin Alliance Church	725 N.BROADWAY, BETRLN 267-4663	EXCELLENT STAND OF CATTALG
E-					
E-			.		
E-					
TYPICAL TYPES OF STORM WATER CONTROL FACILIT Detention / Retention Basin Natural Pond or Wetland Parking Lot Pondling		TIES Roof-Top St Semi-Pervio Infiltration D	ge	d Tank)	

* See measurement key on reverse side.

[^20]

\qquad

Name: STONYCREEK RIVER Name: JEANNE M. JOHNSON Municipality: BERLIN BOROWGH Telephone: $\frac{(814) 267-4929}{}$

Diagram each system on the appropriate map. Establish map points to show changes in system elements LIN BOROWGH T Date: 08-11-05 \qquad

$\begin{gathered} \text { Map I.D. } \\ \text { No. } \\ \hline \end{gathered}$		System's Elements (x)			Measurements *				Material	Year Constr.	Design Data Available	Contact Person Name and Phone	Name of FinalOwnership andMaintenance Responsibility			
		Pipe	Channel / Swale													
From	To				Pipe	Open Channe!	Swale	D						TW	B	Depth
G-213	g- 214		x			18^{1}	11	3^{\prime}	ROCK	2005	YES	R.P. FOGLE ENGRG $\text { (814) } 267-4929$	BERLIN BOROUGH			
G-	G-															
G-	G-															
G-	G-															
G-	G-															
G-	G-															
G-	G-															
G-	G-															
G-	G-															
G-	G-															
G-	G-															
G-	G-															
G-	G-															
G-	G-															
G-	G-		;													

[^21]

[^22]Diagram each system on the appropriate map. Establish map points to show changes in system elements,

FORM COMPLETED BY

INSTRUCTIONS
\qquad
\qquad 7

Name: STONYCREEK RIVER Name: Municipality: BERLIN BORD County: SOMERSET Date: pipe size, or pipe direction. (If unknown, outline the system extent.) Complete this form only where specific

$\begin{gathered} \text { Map I.D. } \\ \text { No. } \end{gathered}$		System's Elements (x)			Measurements *				Material	Year Constr.	Design Data Available	Contact Person Name and Phone	Name of FinalOwnership andMaintenance Responsibility			
		Pipe		el /												
From	To				Pipe	Open Channe!	Swale	D						TW	B	Depth
G- 1	G- 2	X			$8^{\prime \prime}$				CPT	≈ 1978	?	$\begin{aligned} & \text { KEIRRY CLAY COMB } \rightarrow \\ & 267- \end{aligned}$	BERLIN BOROUGH			
G- 2	G- 24	x			12^{11}				RCP	11	?	11	" 1			
G-3	G-6	χ			$8^{\prime \prime}$				CLAY	≈ 1930	NONE KNOWN	"	" "			
G-4a	G- 4	X			$8^{\prime \prime}$				Clay	11	/'	\prime	11			
G- 4	G- 5	x			$8^{\prime \prime}$				CLAY	"	11	1	111			
G- 5	G- 7	X			$10^{\prime \prime}$				CLAY	4	11	11	111			
G- 6	G- 7	X			8"				1	11	11	4	ハ			
G- 7	G- 8	x			$15^{\prime \prime}$				HDPE	UNKNOWN	/1	11	い			
G- 8	G- 9	χ			$15^{\prime \prime}$				11	"	1970's	11	111			
G- 9	G- 10	X			$15^{\prime \prime}$				11	11	19\%0's	11	$11 /$			
G-11	G-G12	χ			$8^{\prime \prime}$				CLAY	1.	$1 /$	11	11 ,			
G- 12	G- 10	χ			11				"	4	11	*	11			
G- 13	G- 14	x			$6^{\prime \prime}$				PVC	11	11	1	11			
G- 15	G- 16	χ			$6^{\prime \prime}$				PVC	/	11	11	1 M			
G- 18	G-17	X	;		1				,	1,	11	1	1111			

[^23]

MAPSHEET H/STREET
$5 /$ NORTH ST
$5 /$ NORTH ST
5/ NORTH ST

11
5/STENART ST $5 /$ STEWART ST (W) $5 /$ WILSON ST.
s $4 /$ WASHINGTON 4.5 / WASH. $5 /$ MEADOW ST 11 5/NORTH ST

See measurement key on reverse side.

FORM G - EXISTING STORM WATER COLLECTION SYSTEMS																	
WATERSHED			FORM COMPLETED BY			INSTRUCTIONS Diagram each system on the appropriate map. Establish map points to show changes in system elements, pipe size, or pipe direction. (If unknown, outline the system extent.) Complete this form only where specific information on construction is available. Use a separate form for each system. Identify the points within a system consecutively (ex. G-1,G-2,G-3) Start the first point in each additional system 20 numbers higher For example, G-3 ends one system, so G-23 begins the next. See Sample Diagrams \& Form on Reverse.											
Name: STCNYCREEK RIVERMunicipality: BERLIN BOROWGHCounty: SOMERSET																	
$\begin{gathered} \hline \text { Map I.D. } \\ \text { No. } \\ \hline \end{gathered}$		System's Elements (x)			Measurements *				Material	Year Constr	Design Data Available	Contact Person Name and Phone	Name of Final Ownership and Maintenance Responsibility	MAPSHEET \# Street			
		Pipe		el $/$													
From	To				Pipe	Open Channel	Swale	D						TW	B	Depth	
G-54	G- 53	X			$8^{\prime \prime}$				CLAY	$\begin{aligned} & \text { ORIG1' } \\ & 1930 \text { 's } \end{aligned}$	UNKNOWN	KERRY CLAYCOMB $(814) 267-3837$	Berlin Borough	\#4 BROADWAY			
G- 53	G- 52	X			い				"	1.	4	4	"				
G- 56	G- 55	X			$6^{\prime \prime}$				PVC	UNHNOWN	"	1	"	$H_{A} /$ NORTH ST			
G- 55	G- 52	χ			$8^{\prime \prime}$				Clay	11	"	1.	1				
G- 52	G- 51	X			$8^{\prime \prime}$				1	1930 's	4	11	1				
G- 51	G- 50	χ			"				11	4	"	い	1,				
G- 50	G-49	χ			$8^{\prime \prime}$				$R C P$	11	11	\cdots	/				
G- 49	G- 48	X			11				CLAY	11	1	11	11				
G-48	G. 47	X			11				PVC	1.1	11	11	11				
G- 47	G- 46	X			$10^{\prime \prime}$				Clay	11	11	1	$1 /$	\#44 4 /NORTHST			
G- 46	G- 45	X			8"				Cllay	"	$1 /$	"	11	${ }^{\#} 5 / \text { NORTH ST }$			
G- 45	G- 44	X			11				PVC	11	11	1,	11	11			
G. 44	G- 43	χ			10^{11}				clay	11	11	11	11	11			
G- 43	G- 42	X			$12^{\prime \prime}$				1.	4	1	${ }^{\prime \prime}$	"	11			
-42b	G- $42 a$	X	:		$12^{\prime \prime}$				Clay	11	!	1	"	\#5/6THAVE			

[^24]\qquad

Diagram each system on the appropriate map. Establish map points to show changes in system elements

Name: STCNYCREEK RIVER Name: JEANNE M. JOHNSON Municipality: BERLIN BOROWGH Telephone: (814) 267-4929 $08-11-05$ \qquad pipe size, or pipe direction. (If unknown. outline the system extent.) Complete this form only where specific County: SOMERSET Date 08-11-05
 system consecutively (ex. G-1,G-2,G-3) Start the first point in each additional system 20 numbers highe

$\begin{gathered} \text { Map I.D. } \\ \text { No. } \end{gathered}$		System's Elements (x)			Measurements *				Material	Year Constr.	Design Data Available	Contact Person Name and Phone	Name of FinalOwnership andMaintenance Responsibility	MAP\#/ STREET			
		Pipe	Channel / Swale														
From	To				Pipe	Open Channel	Swale	D							TW	B	Depth
VG-84	G-83	X			$12^{\prime \prime}$				CLAY	1930's	UNENOWN		BERLIN BOROUGH	H4/FLETCHER			
G- 83	G- 80	X			11				11	1	1		1,	!'			
G- 80	G- 79				11				4	11	1		4	11			
1)-79	G- 78	X			11				11	'	L,		1,	11			
G-89	G- 88	χ			$12^{\prime \prime}$				11	\cdots	11		1/	1			
G- 88	G- 87	X			11				SDR 35	UnkNown	$1 /$		"	',			
G- 87	G-86	X			4				CLAY	/	4		"	"			
G- 86	G-85	X			11				RCP	11	11		4				
G-85	G- 81				11				Clay	11	3		4	1			
G-82	G- 81				6"				PVC	2000	No		11	11			
G- 81	G- 80	X			$12^{\prime \prime}$				CLAY	1930 's	UNKNOWN		\cdots	4			
g- 80	G- 79	X			11				11	11	//		11	$\$ 4 / 5 T^{H} A V E$			
g. 79	G-78				11				RCP	$\begin{aligned} & \text { SOME } \\ & 2001 \end{aligned}$	"		ハ	11			
G. 92	G- 90	X			$8^{\prime \prime}$				CLAY	1930's	$!$		4	$\begin{aligned} & \text { \#8 SOUTHST } \\ & { }_{5} \text { S. } \end{aligned}$			
g. 93	G- 91	X	:		$8^{\prime \prime}$				CLLAY	11	"		11	$11 / 1$			

* See measurement key on reverse side.

INSTRUCTIONS
Diagram each system on the appropriate map. Establish map points to show changes in system elements, pipe size, or pipe direction. (If unknown, outline the system extent.) Complete this form only where specific
 Date: information on construction is available. Use a separate form for each system. Identify the points within a

County: SOMERSET			Date: 08-11-05			For example, G-3 ends one system, so G-23 begins the next. See Sample Diagrams \& Form on Reverse.										
$\begin{gathered} \text { Map I.D. } \\ \text { No. } \\ \hline \end{gathered}$		System's Elements (x)			Measurements *				Material	Year Constr.	Design Data Available	Contact Person Name and Phone	Name of FinalOwnership andMaintenance Responsibility			
		Pipe	Channel / Swale													
From	To				Pipe	Open Channel	Swale	D						TW	B	Depth
G-91	g-75	X			$8^{\prime \prime}$				CLAY/PVC	UNKNOWN	Unknown		BERLIN Borough			
G-77	G-76	X			11				$\begin{aligned} & \text { CLAY } \\ & P V E \end{aligned}$	$1($	',		11			
G-76	G- 75	X			$1 /$				4	11	11		11			
G-75	G- 74	X			4				PVC	SOME 2003	\downarrow		u			
G-74	G-72		$\begin{gathered} \text { SUBSURFACE } \\ X \\ \hline \end{gathered}$			$3{ }^{\prime}$	3^{\prime}	3^{\prime}	ROCK/BRICK	≈ 1918	No		11			
G-73	g- 72	X			8"				PVC	$? 1970^{\text {\% }}$	UNKNown		n			
G-72	G- 71		$\begin{gathered} \text { SUBSURFACS } \\ X \\ \hline \end{gathered}$			3^{\prime}	3^{\prime}	3^{\prime}	ROCK/BRICK	≈ 1918	NO		11			
G- 71	G- 70		11			4	11	''	4	4	$1)$		11			
G- 70	G- 58		11			1	-	1	11	v	11		11			
G-58	G- 57		11			い	1	11	11	11	11		11			
G-57	G-42a	X			$36^{\prime \prime}$				RCP	1960-1970	UNKNOWN	kerry claycomb	11			
G- $42 a$	G-39	X			11				11	11	1 ,	11	11			
G-39	g- 38	X			4				11	11	り	11	$1)$			
G- 38	G- 35				11				1	11	',	11	11			
G- 35	G-32	X	:		11				11	11	11	4	4			

[^25]
\qquad
\qquadto exsting systems. for proposed additions to existing systems, diagram only the additions and their connection point into the existing system Complete a separate form for each pronosed
mew system and one for each existing system having one or more proposed additions Idenitify ine points wilhin a system consecutively (ex $\mathrm{H}-1, \mathrm{H}-\mathrm{Z}, \mathrm{H}-3$). Slar the first point in each
$$
08-11-05
$$
.
Municipality: BERLIN BGRO Telephone: $\frac{\frac{814)}{(86-11-05}-4929}{}$
\qquad
point number from the existing system form and map. See Sample Diagrams and Form on Reverse

FORM H - PROPOSED STORM WATER COLLECTION SYSTEMS SHEET _ O _ _ _ _ _ _																MAPH/STKEET \#6/School GROUNAS '/ $1 /$		
WATERSHED Name: \qquad SIONUIREES RIVETS Municipality: BERLIN BURO County: SOMERSET \qquad			FORM COMPLETED BY Name: Telephone IEINNE M. Jhinson $\frac{(814) 267-4929}{18-11-05}$			INSTRUCTIONS On the map for proposed storm water collection systems, diagram each proposed system. Indicate a map point to show changes in system elements, pipe size, pipe direction and connections to existing systems. For proposed additions to existing systems. diagram only the additions and their connection point into the existing system Complete a separate form for each oronosed new system and one for each existing system having one or more proposed additions Identify the points within a system consecutively (ex H-1, H-2. H-3). Start the first point in each additional system 20 numbers higher (if $\mathrm{H}-3$ ends one system, begin the nexi with $\mathrm{H}-23$). Be sure to show the point where proposed additions connect into existing systems, using the map point number from the existing system form and map. See Sample Diagrams and Form on Reverse.												
	$\begin{aligned} & \text { ap I.D. } \\ & \text { No. } \\ & \hline \end{aligned}$	System's Elements (x)			Measurements**			vale	Material	$\begin{array}{\|c\|} \hline \text { Map I.D. } \\ \text { Nos.** } \\ \text { Form A } \\ \hline \end{array}$	Proposed Const. Dates		Design Data Avail.	Contact Person Name and Phone	Name of Final Ownership and Maintenance Responsibility			
From H. 29	\|c	c		Pipe X	Open Channel	Swale	$12^{\prime \prime}$	TW	B	Depth	HDPE	Form A NEW BLDGCONST.	$\begin{aligned} & \text { Start } \\ & \hline 07 / 05 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { End } \\ \hline 10 / 05 \end{array}$	Avail.	Phone HAYES LARGE ARCH. $(814) 946-0451$	Maintenance Responsibility Berlin bros valley SCHOOL	
H. 30	$\mathrm{H}-31$	X			1.511				11	$1 /$	' 1	$1 /$	''	1,	,			
H-31	H. 32	X			u				$1 /$	1,	',	11	',	h	'/			
H-32					11									1/	$1 /$			
H-33	$\mathrm{H}^{-} \mathrm{G}-121$				11				V	//	$1 /$	//	'	"	/1			
H-	H-																	
H-	H-																	
H-	H-																	
H-	H-																	
$\mathrm{H}-$	H-																	
H-	H-																	
H-	H-																	
H-	H-																	
H-	H-											;						
H-	H-		:															

FORM DESCRIPTION SUMMARY
ACT 167 WATERSHED STORMWATER MANAGEMENT PLAN

Form	Symbol	Description	Types of Examples	Sources of Information
A		Stormwater Problem Areas	Flooding, Drainage, Erosion/Sedimentation	Existing studies or reports, Township Documentation, Personal memory, Township engineer
B	\bigcirc	Obstructions	Bridges. Culverts, Fill, Structures	$\begin{aligned} & \text { Owner or structure, } \\ & \text { township files, } \\ & \text { subdivision } \\ & \text { applications, } \\ & \text { readmaster, township } \\ & \text { engineer } \\ & \hline \end{aligned}$
C	\triangle	Existing Flood Control Projects NO	Channel excavation, rip. rap, floodwalls, etc.	Township records, township engineer, owner of facilitiy
D	0	Proposed Flood Control Projects $\quad 10$	Channel excavation, rip. rap, floodwalls, etc.	Township records, township engineer, owner of facilitiy
E	Δ	Existing Stormwater Control Facilities $\sqrt{ } \mathrm{O}$	Detention basins, recharge basins, rooftop stroage	Subdivision files, township engineer, owner of facility
F	\langle	Proposed Stormwater Control Facilities	Detention basins, recharge basins, rooftop stroage	Subdivision files, township engineer, owner of facility
G	\square	Existing Stormwater Collection Systems $l^{\text {a }}$	Storm sewers, manmade channels, diversions	Existing plans, township engineer, owner of system
H	0	Proposed Stormwater Collection Systems	Storm sewers, manmade channels, diversions	Existing plans, township engineer, owner of system
\|		Present \& Projected Development in Flood Hazard Areas	Subdivision / site plans	Flood Insurance Studies, Subdivision / Site Plans, General knowledge, Township engineer, Private flood studies
J	$\underset{W}{W}$	Water Quality Problem Areas $\quad 10$	Construction sites, agriculture	Municipalities, Conservation District

Begin with A. 1 as the first map number to identify the first' storm water problem area. Illustrate the defined problem on the watershed map provided, and identify it with its map number.

For each storm water problem area within your municipality, enter the map identification number at the head of the column. Describe the problem by placing a check (4 in the appropriate blocks of the column under this map identification number.

When an additional explanation is required, write the line number(s) used in the column marked "Explanation Line No. (s) ${ }^{3}$. Example 1, 2-3, etc.

If storm water problem occurred during and after Agnes, describe the frequency of the problem after Agnes.

Use the explanation lines to list the types of public property damages ,e.g.roadways, hospitals, etc.

Enter the line no. (s)

used to list the map iD no. (s) for the proposed facilities.

Definitions

Storm Water Problem Area

An area that defines the farthest extent of a storm water problem, including any area that experiences property damage, inundation, accelerated erosion. surface water poliution, groundwater pollution, landslides, or any other probiem as a result of storm water runoff.

Groundwater

Water in the ground below the water table. ..

Accelerated Erosion

The removal of the surface of the land through the combined action of man's activities and the natural processes at a rate greater than would occur because of the natural process alone.

Sedimentation

The process by which soil or other surface materials, transported by surface water, is deposited on stream bottoms.

Water Obstruction

Any dike, bridge, culvert, wall, wingwall, fil, pier, wharf, embankment, abutment, or other structure located in, along, across, or projecting into any watercourse, floodway, or body of water.

EXPLAINATION LINE(S)

1) ± 2 - Co ad way damige w over flow goting in to town
2) Plact uater courso hack to godmode instead of man maDE

3)
4)
5)
6)
7)

Begin with A. 1 as the first map number to identify the first' storm water problem area. Illustrate the defined problem on the watershed map provided, and identify it with its map number.

For each storm water problem area within your municipality, enter the map identification number at the head of the column. Describe the problem by placing a check (4 in the appropriate blocks of the column under this map identification number.

When an additional explanation is required, write the line number(s) used in the column marked "Explanation Line No. (5)". Example 1, 2-3, etc

If storm water problem occurred during and after Agnes, describe the frequency of the problem after Agnes.
se the explanation lines to list the types of public property damages ,e.g.roadways, hospitals, etc.

Enter the line no. (s) used to list the map ID no. (s) for the proposed facilities.

Definitions

Storm Water Problem Area

An area that defines the farthest extent of a storm water problem, including any area that experiences property damage, inundation, accelerated erosion, suriace water poliution, groundwater pollution, landslides, or any other problem as a resulk of storm water runoff.

Groundwater

Water in the ground below the water table: -

Accelerated Erosion

The removal of the surface of the land through the combined action of man's activities and the natural processes at a rate greater than would occur because of the natural process alome.

Sedimentation

The process by which soil or other surface materials, transported by surface water, is deposited on stream bottoms.

Water Obstruction

Any dike, bridge, culvert, wall, wingwall, fil, pier, wharf, embankment, abutment, or other structure located in, along, across, or projecting into any watercourse, floodway, or body of water.

* Enter the storm water problem area's Map ID No., if the proposed project will solve or reduce any / all of an identified drainage problem.

\square			FORM G - EXISTING STORM WATER COLLECTION SYSTEMS								SHEET ___ OF		
WATERSHED Name: Municipality: County: \qquad			FORM COMPLETED BY Name: Telephone: \qquad Date: \qquad			INSTRUCTIONS Diagram each system on the appropriate map. Establish map points to show changes in system elements, pipe size, or pipe direction. (If unknown, outline the system extent.) Complete this form only where specific information on construction is available. Use a separate form for each system. Identify the points within a system consecutively (ex. G-1,G-2,G-3). Start the first point in each additional system 20 numbers higher. For example, G-3 ends one system, so G-23 begins the next. See Sample Diagrams \& Form on Reverse.							
$\begin{gathered} \text { Map I.D. } \\ \text { No. } \\ \hline \end{gathered}$		System's Elements (x)			Measurements*				Material	Year Constr.	Design Data Available	Contact Person Name and Phone	Name of Final Ownership and Maintenance Responsibility
From	To	Pipe	Open Channel	Swale	D	TW	B	Depth					
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-												
G-	G-		;										

[^26]

SAMPLE DIAGRAM FOR SYSTEM TWO

\qquad
\qquad

WATERSHED Name: Municipality: County: \qquad			FORM CO Name: Telephone: Date:	LETED		INSTRUCTIONS On the map for proposed storm water collection systems, diagram each proposed syslem. Indicate a map point to show changes in system elements, pipe size, pipe direction and connections to existing systems. For proposed additions to existing systerns, diagram only the additions and their conneclion point into the existing system. Complete a separate form for each proposed. new system and one for each existing system having one or more proposed additions tdentify the points within a system conseculively (ex. H-1, H-2. H-3). Start the first point in each additional system 20 numbers higher (if $\mathrm{H}-3$ ends one system, begin the nexl with $\mathrm{H}-23$). Be sure to show the point where proposed additions connect into existing systems. using the map point number from the existing system form and map. See Sample Diagrams and Form on Reverse.																
Map I.D. No.		System's Elements (x)			$\begin{gathered} \hline \text { Pipe } \\ \hline \text { D } \end{gathered}$	Measurements *			Material	$\begin{gathered} \text { Map I.D. } \\ \text { Nos. }{ }^{* *} \\ \text { Form A } \\ \hline \end{gathered}$	Proposed Const. Dates		Design Data Avail.	Contact Person Name and Phone	Name of FinalOwnership andMaintenance Responsibility							
		Op	anne	ale																		
From	To				Pipe	Open Channel	Swale	TW			B	Depth				Start	End					
H-	H-																					
H-	H																					
H	H-																					
H	H-																					
H	H-																					
H	H-																					
$\mathrm{H}-$	H-																					
H	H-																					
H	H																					
H	H-																					
H	H-																					
H	H																					
H	H																					
H	H-																					
H-	H-		;																			

[^27]
SAMple diagrams

	$\begin{gathered} \text { Measurement } \\ \text { Key } \end{gathered}$
	$0 *$ Diameter $T W=$ Top Width $B=$ Bottom Width

ADDITION TO EXISTING SYSYEM

NIA

[^0]: Page 1

[^1]: Page 1

[^2]: * Enter the storm water problem area's Map ID No., if the proposed project will solve or reduce any / all of an identified drainage problem

[^3]: * See measurement key on reverse side.

[^4]: See measurement key on reverse side.

[^5]: Enter the storm water problem area's Map ID No., if the proposed project will solve or reduce any / all of an identified drainage problem.

[^6]: * See measurement key on reverse side. ${ }^{* *}$ Enter the storm water problem areas' Map I.D. Nos., if proposed project will solve or reduce any/all of the drainage problems.

[^7]: * Enter the storm water problem area's Map ID No., if the proposed project will solve or reduce any / all of an identified drainage problem.

[^8]: ${ }^{*}$ See measurement key on reverse side. ${ }^{* *}$ Enter the storm water problem areas' Map I.D. Nos., if proposed project will solve or reduce any/all of the drainage problems.

[^9]: See measurement key on reverse side.

[^10]: * See measurement key on reverse side

[^11]: * See measurement key on reverse side.

[^12]: See measurement key on reverse side.

[^13]: * See measurement key on reverse side. ** Enter the storm water problem areas' Map I.D. Nos., if proposed project will solve or reduce any/all of the drainage problems.

[^14]: * See measurement key on reverse side. ** Enter the storm water problem areas' Map I.D. Nos., if proposed project will solve or reduce any/all of the drainage problems.

[^15]: * See measurement key on reverse side.

[^16]: explaination liners

 1) stan inthe priblems are addressad as thoy arise and ara correatad

 2)
 3)
 4)

 $\frac{n}{6}$
 ,
 TOTAL P. $D 1$

[^17]: * Enter the storm water problem area's Map ID No., if the proposed project will solve or reduce any / all of an identified drainage problem.

[^18]: Somserv/Jeff H/CTS-Cam/Act 167 Cover Letter

[^19]: * Enter the storm water problem area's Map ID No., if the proposed project will solve or reduce any/all of an identified drainage problem.

[^20]: * See measurement key on reverse side.

[^21]: See measurement key on reverse side.

[^22]: * See measurement key on reverse side.

[^23]: * See measurement key on reverse side.

[^24]: * See measurement key on reverse side.

[^25]: * See measurement key on reverse side.

[^26]: * See measurement key on reverse side

[^27]: * See measurement key on reverse side. ${ }^{* *}$ Enter the storm water problem areas' Map 1.D. Nos., if proposed project will solve or reduce any/all of the drainage problems.

